American Journal of Potato Research

, Volume 83, Issue 3, pp 269–278 | Cite as

Post-harvest applications of zoxamide and phosphite for control of potato tuber rots caused by oomycetes at harvest

  • Jeffrey S. Miller
  • Nora Olsen
  • Lynn Woodell
  • Lyndon D. Porter
  • Shane Clayson


Potato storage tuber rots caused by the late blight and pink rot pathogens at harvest can cause severe economic losses, warranting the need for effective post-harvest fungicide applications. The purpose of this study was to evaluate the efficacy of select post-harvest fungicides in reducing tuber infections by the late blight and pink rot pathogens when applied at various post-inoculation time intervals. ‘Russet Burbank’ potatoes were inoculated by submersion in an aqueous suspension ofPhytophthora infestans orPhytophthora erythroseptica zoospores at 0, 1, 2, 4, and 6 h prior to receiving a post-harvest treatment. Products evaluated were zoxamide (various rates and formulation), phosphite (335 g a.i./MT), and a hydrogen peroxide/peroxyacetic acid mixture (HPPA, 9 g a.i./MT), all applied at 2.08 L/MT of tubers as a low pressure spray prior to storage. Zoxamide and phosphite significantly reduced late blight and pink rot incidence and severity when applied immediately after inoculation. HPPA was less effective at controlling disease development. Phosphite was effective at reducing late blight development at all time intervals up to 6 h post-inoculation (7% vs 80% in untreated). Zoxamide appeared to have good post-harvest disease control if applied soon after inoculation. The maximum time intervals between inoculation and treatment where significant reductions in pink rot incidence were observed was 0 h for HPPA (28%), 2 h for zoxamide (55%; 64 g a.i./MT) and 6 h for phosphite (13%) compared to the untreated (73%). Phosphite provided consistent disease control even when applied several h after inoculation and has potential to be a reliable post-harvest fungicide for the potato industry.

Additional key words

late blight pink rot inoculation hydrogen peroxide/peroxyacetic acid mixture 


Las pudriciones de los tubérculos de papa en almacén, causados por los patógenos del tizón tardío y la pudrición rosada durante la cosecha, pueden causar pérdidas económicas cuantiosas, haciendo necesaria la aplicación de funguicidas después de la cosecha. El propósito de este estudio ha sido evaluar la eficacia de fungicidas selectos, aplicados después de la cosecha para reducir la infección de los patógenos antes mencionados a varios intervalos. Papa ‘Russet Burbank’ fue inoculada sumergiéndola en una suspensión acuosa de zoosporas dePhytophtora infestans o dePhytophthora erythroseptica por 0, 1, 2, 4, 6 horas antes de recibir el tratamiento de post-cosecha. Los productos evaluados fueron zoxamide (a varias dosis y formulaciones), phosphite (335g de i.a./T) y una mezcla de peroxido/ácido peroxiacético (HPPA, 9g de i.a./T) todo aplicado a 2.8 L/T de tubérculos como pulverización a baja presión antes del almacenamiento. Zoxamide y phosphite redujeron significativamente la incidencia de tizón tardío y de pudrición rosada cuando se aplicaron inmediatamente después de la inoculación. El HPPA fue menos efectivo en controlar el desarrollo de la enfermedad. El phosphite fue efectivo en reducir el desarrollo de tizón tardío en todos los tiempos de post-inoculación hasta las 6 horas (7% contra 80% de las no tratadas). Zoxamide parece ejercer buen control post-cosecha de la enfermedad si se aplica lo más pronto después de la inoculación. Los máximos tiempos de intervalo entre la inoculación y el tratamiento donde se observó reducción significativa en la incidencia de pudrición rosada fue 0 h para HPPA (28%), 2 h para zoxamide (55%; 64g de i.a./T) y 6 h para phosphite (13%) comparado con el testigo no tratado (73%). Phosphite proporcionó un consistente control aún cuando se aplicó varias horas después de la inoculación y tiene el potencial para ser un funguicida confiable para ser usado después de la cosecha en la industria de papa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Afek UJ, J Orenstein and JJ Kim. 2001. Control of silver scurf in stored potato by using hydrogen peroxide plus (HPP). Crop Protect 20:69–71.CrossRefGoogle Scholar
  2. Alexander SA and CM Waldenmaier. 2003. Evaluation of fungicides for management of late blight in white potatoes, 2002. Fungic Nemat Tests 58:V050.Google Scholar
  3. Blodgett EC. 1945. Water rot of potatoes. Plant Dis Rep 29:124–126.Google Scholar
  4. Brennan M, G Le Port and R Gornley. 2000. Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. Lebensmittel-Wissenschaft und-Technologie 33:285–289.CrossRefGoogle Scholar
  5. Coffey MD and DG Ouimette. 1989. Phosphonates: antifungal compounds against oomycetes.In: L Boddy, R Marchant and DJ Read (eds), Nitrogen, Phosphorus and Sulphur Utilization by Fungi. Cambridge University Press, Cambridge. pp 107–129.Google Scholar
  6. Cohen Y and MD Coffey. 1986. Systemic fungicides and the control of oomycetes. Ann Rev Phytopathol 24:311–338.CrossRefGoogle Scholar
  7. Cooke LR and G Little. 2001. The effect of foliar application of phosphonate formulations on the susceptibility of potato tubers to late blight. Pest Manag Sci 58:17–25.CrossRefGoogle Scholar
  8. Cubeta MA and BR Cody. 2002. Fungicide evaluation for potato late blight, 2001. Fungic Nemat Tests 57:V058.Google Scholar
  9. Dunstan RH, RH Smillie and BR Grant. 1990. The effects of sub-toxic levels of phosphonate on the metabolism and potential virulence factors ofPhytophthora palmivora. Physiol Mol Plant Pathol 36:205–220.CrossRefGoogle Scholar
  10. Erwin DC and OK Ribeiro. 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN.Google Scholar
  11. Fallik E, Y Aharoni, S Grinberg, A Copel and JD Klein. 1994. Postharvest hydrogen peroxide treatment inhibits decay in eggplant and sweet red pepper. Crop Protect 13:451–454.CrossRefGoogle Scholar
  12. Fenn ME and MD Coffey. 1984. Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytopathology 74:606–611.Google Scholar
  13. Fenn ME and MD Coffey. 1985. Further evidence for the direct mode of action of fosetyl-Al and phosphorous acid. Phytopathology 75:1064–1068.Google Scholar
  14. Fitzpatrick ER and DH Lambert. 2004. Furrow and foliar fungicide treatments for potato pink rot management, 2003. Fungic Nematic Tests 59:V133.Google Scholar
  15. Goss RW. 1949. Pink rot of potato caused byPhytophthora erythroseptica Pethyb. Nebr Agric Res Div Res Bull 160:1–27.Google Scholar
  16. Guest D and B Grant. 1991. The complex action of phosphonates as antifungal agents. Biol Rev 66:159–187.CrossRefGoogle Scholar
  17. Guest DI. 1984. Modification of defense responses in tobacco and capsicum following treatment with fostyl-Al [Aluminum tris (O-ethyl phosphonate)]. Physiol Plant Pathol 25:125–134.CrossRefGoogle Scholar
  18. Guest DI. 1986. Evidence from light microscopy of living tissues that fostyl-Al modifies the defense response in tobacco seedlings following inoculation byPhytophthora nicotianae varnicotianae. Physiol Molec Plant Pathol 29:251–261.Google Scholar
  19. Johnson DA, TF Cummings and PB Hamm. 2000. Cost of fungicides used to manage potato late blight in the Columbia Basin: 1996 to 1998. Plant Dis 84:399–402.CrossRefGoogle Scholar
  20. Johnson DA, TF Cummings, PB Hamm, RC Rowe, JS Miller, RE Thornton, GQ Pelter and EJ Sorensen. 1997. Potato late blight in the Columbia Basin: An economic analysis of the 1995 epidemic. Plant Dis 81:103–106.CrossRefGoogle Scholar
  21. Johnson DA, DA Inglis and JS Miller. 2005. Control of tuber rots caused by oomycetes with foliar applications of phosphorous acid. Plant Dis 88:1153–1159.CrossRefGoogle Scholar
  22. Jones W. 1954. Pink rot of potato tubers on Vancouver island. Can J Agric Sci 34:506.Google Scholar
  23. Kirk WW, RL Schafer and D Berry. 2003. Evaluation of Reason, Scala, Gavel, and EBDC-based programs for potato late blight control, 2002. Fungic Nemat Tests 58:V106.Google Scholar
  24. Klimes JT. 2002. Hydrogen peroxide compounds for potato tuber disinfestations and sprout suppression. M.S. Thesis. Graduate School, University of Idaho, College of Agriculture.Google Scholar
  25. Lambert DH, AI Currier and MO Olanya. 1998. Transmission ofPhytophthora infestans in cut potato seed. Amer J Potato Res 75:257–263.Google Scholar
  26. Lambert DH and B Salas. 2001. Pink rot.In: WR Stevenson, R Loria, GD Franc, and DP Weingartner (eds), Compendium of Potato Diseases. American Phytopathological Society, St. Paul, MN. pp 33–34.Google Scholar
  27. Ludy RL and ML Powelson. 2003. Evaluation of in-furrow fungicides for control of pink rot of potato, 2002. Fungic Nemat Tests 58:V103.Google Scholar
  28. Mari M, T Cembali, E Baraldi and L Casalini. 1999. Peracetic acid and chlorine dioxide for postharvest control onMonilinia laxa in stone fruits. Plant Dis 83:773–776.CrossRefGoogle Scholar
  29. Matheron ME. 2002. Comparative ability of six fungicides to inhibit development ofPhytophthora gummosis on citrus. Plant Dis 86:687–690.CrossRefGoogle Scholar
  30. May SR, BJ Christ and MW Peck. 2004. Fungicidal control of late blight on potato, 2003. Fungic Nemat Tests 59:V102.Google Scholar
  31. Miller JS, MK Hubbard, BD Geary, AT Schneider and D Atkinson. 2004. Effect of irrigation method and fungicide application interval on late blight tuber blight. Amer J Potato Res 81:74. (abstr)CrossRefGoogle Scholar
  32. Olsen BD. 2002. Evaluation of fungicides for control of late blight of potato, 2001. Fungic Nemat Tests 57:V067.Google Scholar
  33. Olsen N, G Kleinkopf and L Woodell. 2003. Efficacy of chlorine dioxide for disease control on stored potatoes. Amer J Potato Res 80:387–395.Google Scholar
  34. Porter LD, JS Miller and P Nolte. 2004. Occurrence and fitness of mefenoxam resistant isolates ofPhytophthora erythroseptica in Idaho. Phytopathology 94:S85. (abstr)Google Scholar
  35. Saindrenan P, T Barchietto, J Avelino and G Bompeix. 1988. Effects of phosphite on phytoalexin accumulation in leaves of cowpea infected withPhytophthora cryptogea. Physiol Molec Plant Pathol 32:425–435.CrossRefGoogle Scholar
  36. Salas B, NC Gudmestad, GA Secor, RJ Taylor and C Doetkott. 2000a. Sensitivity of North American isolates ofPhytophthora erythroseptica andPythium spp. to mefenoxam (Ridomil Gold EC). Amer J Potato Res 77:417. (abstr)Google Scholar
  37. Salas B, RW Stack, GA Secor and NC Gudmestad. 2000b. The effect of wounding, temperature, and inoculum on the development of pink rot of potatoes caused byPhytophthora erythroseptica. Plant Dis 84:1327–1333.CrossRefGoogle Scholar
  38. Sauer DB and R Burroughs. 1986. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 76:745–749.Google Scholar
  39. Stark JC and SL Love. 2003. Potato Production Systems. University of Idaho Agricultural Communications, Moscow, ID.Google Scholar
  40. Stevenson WR, RV James and RE Rand. 2004. Effect of seedpiece and in-furrow treatment on development of pink rot symptoms and other diseases, plant growth and yield, 2003. Fungic Nemat Tests 59:V041.Google Scholar
  41. Taylor RJ, B Salas and NC Gudmestad. 2004. Differences in etiology affect mefenoxam efficacy and the control of pink rot and leak tuber diseases of potato. Plant Dis 88:301–307.CrossRefGoogle Scholar
  42. Wicks TJ, KG Pegg, RF deBoer and PA Magarey. 1990. Evaluation of phosphonic acid as a fungicide in Australia. Brighton Crop Prot Conf—Pests and Diseases 1:97–102.Google Scholar
  43. Young DH and RA Slawecki. 2001. Mode of action of zoxamide (RH-7281), a new oomycete fungicide. Pestic Biochem Physiol 69:100–111.CrossRefGoogle Scholar
  44. Zainuri D, C Joyce, AH Wearing, LM Coates and CM Crossley. 1997. Effect on stem-end rot and anthracnose levels of dipping mango fruit in host-defence-promoting compounts.In: GI Johnson, E Higley, and DC Joyce (eds), Disease Resistance in Fruit: Proceedings of an International Workshop held in Chiang Mai, Thailand. pp 202–207.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jeffrey S. Miller
    • 1
  • Nora Olsen
    • 2
  • Lynn Woodell
    • 3
  • Lyndon D. Porter
    • 4
  • Shane Clayson
    • 1
  1. 1.Aberdeen Research and Extension CenterUniversity of IdahoAberdeenUSA
  2. 2.Twin Falls Research and Extension CenterUniversity of IdahoTwin FallsUSA
  3. 3.Kimberly Research and Extension CenterUniversity of IdahoKimberlyUSA
  4. 4.Vegetable and Forage Corps Research UnitUSDA-ARSProsserUSA

Personalised recommendations