Microgravity - Science and Technology

, Volume 17, Issue 3, pp 94–100 | Cite as

Numerical investigations on premixed spherical flames for Lewis numbers larger than unity



We present numerical simulations of premixed spherical flames under µg conditions using the thermo-diffusive approximation. The employed numerical method is based on a finite volume discretization with explicit Runge-Kutta time integration, both of second order. A multiresolution technique is used to represent the solution on an adaptive, locally refined grid, which allows efficient and accurate computations at a reduced computational cost. We study the ignition limit, i.e. the critical radius for which the flame extinguishes, for varying Lewis numbers larger than unity. We also present fully three-dimensional simulations of initially stretched spherical flames and show their relaxation towards spherical flames, which justifies the one-dimensional spherically symmetric simulations.


Lewis Number Finite Volume Scheme Flame Velocity Ignition Limit Spherical Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bockhorn, J. Fröhlich, andK. Schneider. An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls. Combust. Theory Modelling, 3:1–22, 1999.CrossRefGoogle Scholar
  2. [2]
    P. Clavin. Dynamic behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci., 11:1–59, 1985.CrossRefGoogle Scholar
  3. [3]
    A. Cohen, S. M. Kaber, S. Müller, andM. Postel. Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp., 72:183–225, 2002.CrossRefGoogle Scholar
  4. [4]
    W. Gerlinger, K. Schneider, J. Fröhlich, andH. Bockhorn. Numerical simulations on the stability of spherical flame structures. Combust. Flame, 132:247–271, 2003.CrossRefGoogle Scholar
  5. [5]
    B. Gottschlich-Müller and S. Müller. Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In M. Fey and R. Jeltsch, editors, Hyperbolic problems: Theory, numerics, applications, pages 385–394. Birkhäuser, 1999.Google Scholar
  6. [6]
    A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math., 48:1305–1342, 1995.MATHMathSciNetGoogle Scholar
  7. [7]
    L. He andP. Clavin. Premixed Hydrogen-Oxygen flames. part II: Quasi-isobaric ignition near the flammability limit. Combust. Flame, 93:408–420, 1993.CrossRefGoogle Scholar
  8. [8]
    G. Joulin andP. Clavin. Linear stability analysis of nonadiabatic flames: diffusional-thermal model. Combust. Flame, 35:139–153, 1979.CrossRefGoogle Scholar
  9. [9]
    B. Rogg. The effect of Lewis number greater than unity on an unsteady propagating flame with one-step chemistry. In N. Peters and J. Warnatz, editors, Numerical methods in laminar flame propagation, volume 6 of Notes on numerical fluid mechanics, pages 38 48. Vieweg, 1982. [10]Google Scholar
  10. [10]
    P. D. Ronney. Near-limit flame structures at low Lewis number. Combust. Flame, 82:1–14, 1990.CrossRefGoogle Scholar
  11. [11]
    O. Roussel andK. Schneider: Adaptive numerical simulation of pulsating planar flames for large Lewis and Zeldovich ranges. submitted to Comm. Nonlinear Sci. Numer. Simul., 11:463–480, 2006.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    O. Roussel, K. Schneider, A. Tsigulin, andH. Bockhorn. A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys., 188(2):493–523, 2003.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    G. I. Sivashinsky. Diffusional-thermal theory of cellular flmes. Combust. Sci. Tech., 15:137–146, 1977.CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2005

Authors and Affiliations

  • Olivier Roussel
    • 1
  • Kai Schneider
    • 2
    • 3
  • Henning Bockhorn
    • 1
  1. 1.Institut für Technische Chemie und Polymerchemie(TCP)Universität Karlsruhe (TH)KarlsruheGermany
  2. 2.Laboratoire de Modélisation et Simulation Numérique en Mécanique et Génie des ProcédésCNRS et Université d’ Aix-MarseilleMarseille cedex 20France
  3. 3.Centre de Mathématiques et d’InformatiqueUniversité d’Aix-Marseille IMarseille cedex 13France

Personalised recommendations