Bacteriorhodopsin crystal growth in reduced gravity - Results under the conditions, given in CPCF on board of a space shuttle, versus the conditions, given in DCAM on board of the Space Station Mir

  • Ch. Zörb
  • A. Weisert
  • J. Stapelmann
  • G. Smolik
  • D. C. Carter
  • B. S. Wright
  • K. D. Brunner-Joos
  • G. Wagner


For the purpose of bio-electronics, bacteriorhodopsin was crystallized into two habits through liquid-liquid-diffusion, namely individual needles of up to 1.9 mm in length and needle bunch-like clusters of up to 4.9 mm in total length. In both the reduced gravity experiments performed, the morphology of the individual needles (crystal form A) had improved in terms of sharp needle edges and compact needle packing, compared to the parallel ground controls. For the long duration wide range low gravity condition in the "Diffusion-controlled Crystallization Apparatus for Microgravity (DCAM)" on Mir (STS-89 up), needle bunches on average were longer there than on the ground, while the compactness of the clusters, i.e. the average ratio of clustered length to clustered width was the reverse. Some exceptionally large individual needles were grown in DCAM. For the "Commercial Protein Crystallization Facility (CPCF)" in short duration high definition microgravity condition during a science mission of the Space Shuttle Discovery (STS-95), size and shape of the individual needles were homogeneous and superior to those of both the parallel ground controls and the results in DCAM. In CPCF, the average volume of the individual needles in suspension was increased by 50 % in microgravity compared to those in the ground control.


Ground Control Space Shuttle Microgravity Condition Purple Membrane Free Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Oesterhelt, D., Bräuchle, C., Hampp, N.: Bacteriorhodopsin: a biological material for information processing. Q. Rev. Biophys., vol. 24, p. 425 (1991).CrossRefGoogle Scholar
  2. 2.
    Hampp, N. A.: Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material. Appl. Microbiol. Biotechnol., vol. 53, p. 633 (2000).CrossRefGoogle Scholar
  3. 3.
    Juchem, T., Hampp, N.: Non-destructive testing system based on bacterior-hodopsin films. 238. WE-Heraeus-Seminar (2000).Google Scholar
  4. 4.
    Michel, H., Oesterhelt, D.: Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A., vol. 77, p. 1283 (1980).CrossRefGoogle Scholar
  5. 5.
    Landau, E. M., Rosenbusch, J. P.: Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A., vol. 93, p. 14532 (1996).CrossRefGoogle Scholar
  6. 6.
    Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., Lanyi, J. K.: Structure of bacteriorhodopsin at 1.55 Å, resolution. J. Mol. Biol., vol. 291, p. 899 (1999).CrossRefGoogle Scholar
  7. 7.
    Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., Landau, E. M.: X-ray structure of bacterio-rhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, vol. 277, p. 1676 (1997).CrossRefGoogle Scholar
  8. 8.
    Michel, H.: Characterization and crystal packing of three-dimensional bacteriorhodopsin crystals. EMBO J., vol. 1, p. 1267 (1982).Google Scholar
  9. 9.
    Wagner, G., andLinhardt, R.: Liquid-liquid diffusion profiles in microgravity experiments, and crystal growth of the membrane protein bacteriorho dopsin. J. Crystal Growth, vol. 110, p. 114 (1991).CrossRefGoogle Scholar
  10. 10.
    Otalora, F., Garcia Ruiz, J. M.: Crystal growth studies in microgravity with the APCF. 1. Computer simulation of transport dynamics. J. Crystal Growth, vol. 182, p. 141 (1997).CrossRefGoogle Scholar
  11. 11.
    Ducruix, A. and Giegé, R.: Crystallization of Nucleic Acids and Proteins, Second Edition, Oxford Univ. Press (1999).Google Scholar
  12. 12.
    Wagner, G.: Bacteriorhodopsin Crystal Growth under Microgravity Results of IML-1 and Spacehab-1 Experiments. ESA Journal, vol. 18, p. 25 (1994).Google Scholar
  13. 13.
    Dag, O., Ahari, H., Coombs, N., Jiang, T., Aroca-Ouellette, P. P., Petrov, S., Sokolov, I., Verma, A., Vovk, G., Young, D., Ozin, G. A., Reber, C., Pelletier, Y., Bedard, R. L.: Does microgravity influence self-assembly? Advanced Materials, vol. 9, p. 1133 (1997).CrossRefGoogle Scholar
  14. 14.
    Bosch, R., Lautenschlager, P., Potthast, L., Stapelmann, J.: Experiment equipment for protein crystallization inµg facilities. J. Crystal Growth, vol. 122, p. 310 (1992).CrossRefGoogle Scholar
  15. 15.
    Pletser, V., Stapelmann, J., Potthast, L., Bosch, R.: The protein crystallization diagnostics facility, a new european instrument to investigate biological macromolecular crystal growth on board the international space station. J. Cryst. Growth, vol. 196, p. 638 (1999).CrossRefGoogle Scholar
  16. 16.
    Carter, D. C., et al.: Diffusion-controlled crystallization apparatus for microgravity (DCAM): flight and ground-based applications. J. Crystal Growth, vol. 196, p. 602 (1999).CrossRefGoogle Scholar
  17. 17.
    Schertler, G. F. X.: Kristallisation von Bacteriorhodopsin. Charakterisierung des M-Intermediats im Kristall. Dissertation Universität München (1988), (Wissenschaftl. Forschungsbeiträge Biol., Biochem., Chem. 41).Google Scholar
  18. 18.
    Michel, H.: Enzymes, Receptors and Carriers of Biological Membranes, in Azzi et al. (Eds.): Crystallization of two membrane proteins: bacteriorhodopsin and photosynthetic reaction centres. Springer-Verlag Berlin, Heidelberg, p. 39 (1984).Google Scholar
  19. 19.
    Neugebauer, D.-Ch., Zingsheim, H. P., Oesterhelt, D.: Recrystallization of the purple membrane in vivo and in vitro. J. Mol. Biol., vol. 123, p. 247 (1978).CrossRefGoogle Scholar
  20. 20.
    Neugebauer, D.-Ch., Zingsheim, H.-P., Oesterhelt: Biogenesis of purple membrane in halobacteria. Methods in Enzymology, vol. 97, p. 218 (1983).CrossRefGoogle Scholar
  21. 21.
    Schertler, G. F. X., Bartunik, H. D., Michel, H., Oesterhelt, D. J.: Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 Å resolution. Mol. Biol., vol. 234, p. 156 (1993).CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2002

Authors and Affiliations

  • Ch. Zörb
    • 1
  • A. Weisert
  • J. Stapelmann
  • G. Smolik
  • D. C. Carter
  • B. S. Wright
  • K. D. Brunner-Joos
  • G. Wagner
  1. 1.Institut für Pflanzenernährung (IFZ)Justus-Liebig-UniversitätGießenGermany

Personalised recommendations