Advertisement

Fifty years of subnuclear physics: from past to future and the ELN project

  • A. Zichichi
Article
  • 119 Downloads

References and Notes

  1. [1]
    Lamb W. E. andRetherford R. C.,Fine Structure of the Hydrogen Atom by a Microwave Method,Phys. Rev.,72 (1947) 241.Google Scholar
  2. [2]
    Lattes C. M. G., Muirhead H., Occhialini G. P. S. andPowell C. F.,Processes Involving Charged Mesons,Nature,159 (1947) 694;Lattes C. M. G., Occhialini G. P. S. andPowell C. F.,Observations on the Tracks of Slow Mesons in Photographic Emulsions, Nature,160 (1947) 454.Google Scholar
  3. [3]
    Rochester G. D. andButler C. C.,Evidence for the Existence of New Unstable Elementary Particles,Nature,160 (1947) 855.Google Scholar
  4. [4]
    The first “radiative” effects (experimentally) discovered are the Lamb-shift and the “anomalous” magnetic moment of the electron. They are examples of two distinct phenomena. One (the Lamb-shift) can be almost fully (95%) accounted for by a non-relativistic calculation (as done byH. A. Bethe who found 1040 MHz:The Electromagnetic Shift of Energy Levels, Phys. Rev.,72 (1947) 339), while the other (the “anomalous” magnetic moment) cannot. The fact that the gyromagnetic ratio of the electron is predicted by the Dirac equation to beg = 2 cannot be accounted for by any non-relativistic description. The magnetic behaviour of an electron in a magnetic field corresponds to the effect caused by the emission and reabsorption of virtual photons on its magnetic moment. The “anomalous” magnetic moment of the electron,i.e. itsg value being different from 2, needs a relativistic description of the virtual electromagnetic processes. This was done by J. Schwinger a few months after the experimental discovery of the Lamb-shift:Phys. Rev.,73 (1948) 416. In this paper the “anomalous” magnetic moment of the electron was theoretically found to be the by now famous (α/2π). Furthermore, while the Lamb-shift affects only the hydrogen atom, the deviation from QED of an intrinsic property such as the “magnetic” moment of an elementary particle (the electron) is expected to affect other particles as well. In fact—when the muon came in—the “anomalous” magnetic moment of this unexpected particle was considered the crucial check in order to verify its intrinsic properties (see subsect. 2.2.2).Google Scholar
  5. [5]
    Maiani L. andZichichi A.,Dal Gran Sasso al Supermondo, INFN/AE-98/19, July 1998.Google Scholar
  6. [6]
    Soergel V., Waloschek P. andWiik B.,The HERA Collider, DESY, January 1994.Google Scholar
  7. [7]
    Morpurgo M.,The Thin Superconducting Solenoid for ZEUS, INFN/CERN report 1985;Lin Q. andMorpurgo M.,The Thin Superconducting Solenoid for ZEUS, INFN/CERN report 1988;Bruni P., Ceresara S., Li Y., Lin Q., Musso B. andZichichi A.,Design Study of α ϕ 19.5 × 36 MSuperconducting Solenoid, inProceedings of the Applied Superconductivity Conference-ASC 1990, Snowmass, CO, USA 24–26 September 1990,IEEE Trans. Magn.,27, n. 2 (1991) 1969.Google Scholar
  8. [8]
    Dalpiaz P.,Alpi project, LNF-INFN-001/87;Fortuna G., Pengo R., Bassato G., Ben-Zvi I., Larson J. D., Sokolowski J. S., Badan L., Battistella A., Bisoffi G., Buso G., Cavenago M., Cervellera F., Dainelli A., Facco A., Favaron P., Lombardi A., Marigo S., Moisio M. F., Palmieri V., Porcellato A. M., Rudolph K., Preciso R. and Tiveron B.,The ALPI Project at the Laboratori Nazionali di Legnaro, Nucl. Instrum. Methods A,287 (1990) 253;Dainelli A., Bassato G., Battistella A., Bellato M., Beltramin A., Bertazzo L., Bezzon G., Bisoffi G., Boscagli L., Canella S., Carlucci D., Cervellera F., Chiurlotto F., Contran T., De Lazzari M., Facco A., Favaron P., Fortuna G., Gustafsson S., Lollo M., Lombardi A., Marigo S., Moisio M. F., Palmieri V., Pengo R., Pisent A., Poggi M., Poletto F., Porcellato A. M. andZiomi L.,Commissioning of the ALPI post-accelerator,Nucl. Instrum. Methods A,382 (1996) 100;Fortuna G., Bisoffi G., Facco A., Lombardi A., Palmieri V., Pisent A. andPorcellato A. M.,Status of ALPI and Related Developments of Superconducting Structures, Proceedings Linac 96 Conference, edited by C. Hill and M. Vretenar, CERN 96-07, 905 (1996).Google Scholar
  9. [9]
    Calabretta L., Cuttone G., Gammino S., Gmaj P., Migneco E., Raia G., Rifuggiato D., Rovelli A., Sura J., Amato A., AttinÀ G., Cafici M., Caruso A., De Luca G., Pace S., Passarello S., Pulvirenti S., Sarta G., Sedita M., Sparta A., Speziale F., Acerbi E., Alessandria F., Bellomo G., Birattari C., Bosotti A., De Martinis C., Fabrici E., Giove D., Michelato P., Pagani C., Rossi L., Baccaglioni G., Giussani W. andVarisco G.,Commissioning of the K800 INFN Cyclotron, inProceedings of the XIV Conference on Cyclotrons and their Applications, Capetown, 1995, edited byJ. C. Cornell (World Scientific) 1996, p. 12;Calabretta L., Ciavola G., Cuttone G., Gammino S., Gmaj P., Migneco E., Raia G., Rifuggiato D., Rovelli A., Sura J., Scuderi V., Acerbi E., Alessandria F., Bellomo G., Bosotti A., De Martinis C., Giove D., Michelato P., Pagani C. andRossi L.,First Operations of the LNS Heavy Ions Facility, Nucl. Instrum. Methods A,382 (1996) 140.Google Scholar
  10. [10]
    Acerbi E. et al.,The INFN-LASA Lab., Proceedings of the 9th International Conference on Cyclotrons and their Applications, Caen (France) (Editions de Physique, Les Ulis) 1981, p. 169.Google Scholar
  11. [11]
    The progress of Subnuclear Physics as reported in the Erice School books whose titles follow: 1)Strong, Electromagnetic and Weak Interactions (1963); 2)Symmetries in Elementary Particle Physics (1964); 3)Recent Developments in Particle Symmetries (1965); 4)Strong and Weak Interactions-Present Problems (1966); 5)Hadrons and their Interactions (1967); 6)Theory and Phenomenology in Particle Physics (1968); 7)Subnuclear Phenomena (1969); 8)Elementary Processes at High Energy (1970); 9)Properties of the Fundamental Interactions (1971); 10)Highlights in Particle Physics (1972); 11)Laws of Hadronic Matter (1973); 12)Lepton and Hadron Structure (1974); 13)New Phenomena in Subnuclear Physics (1975); 14)Understanding the Fundamental Constituents of Matter (1976); 15)The Whys of Subnuclear Physics (1977); 16)The New Aspects of Subnuclear Physics (1978); 17)Pointlike Structures Inside and Outside Hadrons (1979); 18)The High-Energy Limits (1980); 19)The Unity of Fundamental Interactions (1981); 20)Gauge Interactions: Theory and Experiments (1982); 21)How far are we from the Gauge Forces (1983); 22)Quarks,Leptons and their Constituents (1984); 23)Old and New Forces of Nature (1985); 24)The Super World I (1986); 25)The Super World II (1987); 26)The Super World III (1988); 27)The Challenging Questions (1989); 28)Physics up to 200 TeV (1990); 29)Physics at the Highest Energy and Luminosity: To Understand the Origin of Mass (1991); 30)From Superstrings to the Real Superworld (1992); 31)From Supersymmetry to the Origin of Space-Time (1993); 32)From Superstring to Present-day Physics (1994); 33)Vacuum and Vacua: the Physics of Nothing (1995); 34)Effective Theories and Fundamental Interactions (1996); 35)Highlights: 50 Years Later (1997). Vol. 1 was published by W. A. Benjamin, Inc., New York; 2–8 and 11–12 by Academic Press, New York and London; 9–10 by Editrice Compositori, Bologna; 13–29 by Plenum Press, New York and London; 30–36 by World Scientific.Google Scholar
  12. [12]
    Hawking S. W.,Particle Creation by Black Holes,Commun. Math. Phys.,43 (1975) 199.MathSciNetGoogle Scholar
  13. [13]
    Bernardini M., Bollini D., Fiorentino E., Mainardi F., Massam T., Monari L., Palmonari F. andZichichi A.,A Proposal to Search for Leptonic Quarks and Heavy Leptons Produced by ADONE, INFN/AE-67/3, 20 March 1967;Alles-Borelli V., Bernardini M., Bollini D., Brunini P. L., Massam T., Monari L., Palmonari F. and Zichichi A.,Limits on the Electromagnetic Production of Heavy Leptons, Lett. Nuovo Cimento, 4 (1970) 1156; Bernardini M., Bollini D., Brunini P. L., Fiorentino E., Massam T., Monari L., Palmonari F., Rimondi F. and Zichichi A.,Limits on the Mass of Heavy Leptons, Nuovo Cimento A,17 (1973) 383; and ref. [89].Google Scholar
  14. [14]
    ’t Hooft G.,Quantization of Point Particles in (2+1)-Dimensional Gravity and Spacetime Discreteness,Class. Quantum Grav.,13 (1996) 1023; ’t Hooft G.,The Scattering Matrix Approach for the Quantum Black Hole: an Overview, Int. J. Mod. Phys. A,11 (1996) 4623.MathSciNetGoogle Scholar
  15. [15]
    For a review seeVeneziano G.,An Amusing Cosmology from the String Effective Action, inEffective Theories and Fundamental Interactions, Erice 1996 (World Scientific) 1997, p. 300.Google Scholar
  16. [16]
    Veneziano G.,Scale Factor Duality for Classical and Quantum Strings,Phys. Lett. B,265 (1991) 287;Gasperini M. andVeneziano G.,Pre-Big-Bang in String Cosmology, Astropart. Phys.,1 (1993) 317. For a complete collection of papers on the PBB scenario seehttp://www.to.infn.it/∼ gasperin/. MathSciNetGoogle Scholar
  17. [18]
    Kaluza andKlein were the first [19, 20] to think and propose that the electromagnetic forces could be described in terms of an extra dimension of space to be added to the standard Lorentz space-time as the one illustrated in fig. 4. Thus, instead of (3 +1) dimensions, the Lorentz space should have (4 + 1) dimensions. The extra space dimension, the 5th one, would be compactified around a circle, thus producing the U(1) symmetry which generates the electromagnetic forces. The latest news is that our world has its origin in 11 bosonic dimensions (10 space + 1 time) and 32 fermionic dimensions. We shall try to summarize here how we go from these 43 dimensions of the superspace to our world with (3 + 1) bosonic dimensions and the gauge forces SU(3) ×SU(2) × U(1) plus 3 families. Note that the time dimension is always one. The space dimensions are 10. In (10 +1) dimensions supergravity has no gauge group,i.e. no vector fields. If one dimension is compactified, this becomes a coupling. In fact superstring theory in (9 + 1) dimensions plus a coupling is equivalent to supergravity in (10 + 1) dimensions, as shown by P. Horova and E. Witten [21]. The new development is that the compactification must be done on a segment (not on a circle àla Kaluza-Klein). The end points of the segment each have 10 dimensions. Imposing anomaly cancellation, gauge groups appear and these are E8 × E8. It is the compactification into a segment and the condition of anomaly cancellation which produces the gauge groups E8 × E8. The compactification into a segment reduces the number of fermionic dimensions from 32 to 16. If the compactification were on a circle (àla Kaluza-Klein), the number of fermionic dimensions would remain 32. Another important detail: the length of the segment gives the coupling. A long segment corresponds to a strong coupling; a short segment corresponds to a weak coupling for the string theory. The last step is the compactification of the 6 remaining bosonic dimensions in a Calabi-Yau manifold [22, 23]. This manifold has the property of reducing the 16 fermionic dimensions into 4 fermionic dimensions (i.e. N = 1 supersymmetry) and giving rise to the gauge groups E6 × E8. The E6 group containsSU(3) ×SU(2) × U(1) and this is the standard model. The group E8 remains hidden and all particles of our world are singlets. The particles of E8 communicate with the particles of the standard model via gravitational interactions. The hope is that this hidden E8 sector, gravitationally coupled to the standard model, is going to be the source of supersymmetry breaking [24]. An important detail is that the 6-dimensional Calabi-Yau manifold has the property that right and left-handed states are not equal in number. Therefore, parity violation is in the structure of space. Another important point is that the number of families can be derived [25] from the topological properties of the Calabi-Yau manifold [26]. In other words, why are there three families has as answer, another question: why that particular topological property in the Calabi-Yau manifold? Thus, the origin of the fictitious spaces with one, two and three complex dimensions is in the 43 dimensions of the superspace.Google Scholar
  18. [19]
    Kaluza T.,Zum Unitätsproblem der Physik,Sitz. Phreuss Akad. Wiss.,K11 (1921) 466.Google Scholar
  19. [20]
    Klein O.,Quantentheorie und fünfdimensionale Relativitätstheorie,Z. Phys.,37 (1926) 895.Google Scholar
  20. [21]
    Horova P. andWitten E.,Heterotic and Type I String Dynamics from Eleven Dimensions,Nucl. Phys. B,460 (1996) 506.Google Scholar
  21. [22]
    Calabi E., inAlgebraic Geometry and Topology: A symposium in honour of S. Lefschetz (Princeton University Press) 1957, p. 78.Google Scholar
  22. [23]
    Yau S.-T.,Calabi’s Conjecture and Some New Results in Algebraic Geometry,Proc. Natl. Acad. Sci. (USA),74 (1977) 1798.Google Scholar
  23. [24]
    Ferrara S.,Considerations on the Moduli Space of Calabi-Yau Manifolds, inThe Challenging Questions, Erice 1989, edited byA. Zichichi (Plenum Press, New York and London) 1990, p. 103.Google Scholar
  24. [25]
    Ferrara S.,Effective Lagrangians for Superstring Compactification, inThe Superworld III, Erice 1988, edited byA. Zichichi (Plenum Press, New York and London) 1990, p. 77.Google Scholar
  25. [26]
    Ferrara S.,Heterotic and Type II Superstrings Compactified on Calabi-Yau Manifolds, inPhysics up to 200 TeV,Erice 1990, edited byA. Zichichi (Plenum Press, New York and London) 1991, p. 155.Google Scholar
  26. [27]
    Brustein R., Gasperini M., Giovannini M. andVeneziano G.,Relic Gravitational Waves from String Cosmology,Phys. Lett. B,361 (1995) 45.MathSciNetGoogle Scholar
  27. [28]
    Gasperini M., Giovannini M. andVeneziano G.,Primordial Magnetic Fields from String Cosmology,Phys. Rev. Lett,75 (1995) 3796.Google Scholar
  28. [29]
    Dirac P. A. M.,Quantised Singularities in the Electromagnetic Field,Proc. R. Soc. London, Ser. A,133 (1931) 60.Google Scholar
  29. [30]
    Dirac P. A. M.,The Principles of Quantum Mechanics, 4th edition (Clarendon Press, Oxford) 1958.Google Scholar
  30. [31]
    Weyl H.,The Theory of Groups and Quantum Mechanics (Dover Publications, New York) 1928.Google Scholar
  31. [32]
    Anderson C. D.,The Positive Electron,Phys. Rev.,43 (1933) 491;Blackett P. M. S. andOcchialini G. P. S.,Some Photographs of the Tracks of Penetrating Radiation, Proc. R. Soc. London, Ser. A,139 (1933) 699.Google Scholar
  32. [33]
    Dirac P. A. M.,Theory of Electrons and Positrons, Nobel Lecture, December 12 (1933).Google Scholar
  33. [34]
    Lee T. D. andYang C. N.,Question of Parity Conservation in Weak Interactions,Phys. Rev.,104 (1956) 254.Google Scholar
  34. [35]
    Wu C. S., Ambler E., Hayward R. W. andHoppes D. D.,Experimental Test of Parity Conservation in Beta Decay,Phys. Rev.,105 (1957) 1413;Garwin R., Lederman L. andWeinrich M.,Observation of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon, Phys. Rev.,105 (1957) 1415; Friedman J. J. and Telegdi V. L.,Nuclear Emulsion Evidence for Parity Non-Conservation in the Decay Chain π+ μ+ e+,Phys. Rev.,105 (1957) 1681.Google Scholar
  35. [36]
    Landau L. D.,On the Conservation Laws for Weak Interactions,Zh. Eksp. Tear. Fiz.,32 (1957) 405.Google Scholar
  36. [37]
    Lee T. D., Oehme R. andYang C. N.,Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation,Phys. Rev.,106 (1957) 340.MathSciNetGoogle Scholar
  37. [38]
    Christenson J., Cronin J. W., Fitch V. L. andTurlay R.,Evidence for the 2π Decay of the K20 Meson,Phys. Rev. Lett.,13 (1964) 138.Google Scholar
  38. [39]
    Chew G. F.,The Analytic S Matrix (W. A. Benjamin Inc., New York, Amsterdam) 1966.Google Scholar
  39. [40]
    To the best of my knowledge, theCPT Theorem was first proved byW. Pauli in his articleExclusion Principle, Lorentz Group and Reflection of Space-Time and Charge, inNiels Bohr and the Development of Physics ((Pergamon Press, London) 1955, p. 30), which in turn is an extension of the work of J. Schwinger (Phys. Rev.,82 (1951) 914;The Theory of Quantized Fields. II., Phys. Rev.,91 (1953) 713;The Theory of Quantized Fields. III., Phys. Rev.,91 (1953) 728;The Theory of Quantized Fields. VI, Phys. Rev.,94 (1954) 1362) and G. Lüders,On the Equivalence of Invariance under Time Reversal and under Particle-Antiparticle Conjugation for Relativistic Field Theories (Dansk. Mat. Fys. Medd.,28 (1954) 5), which referred to an unpublished remark by B. Zumino. The final contribution to theCPT Theorem was given by R. Jost, inEine Bemerkung zum CPT Theorem (Helv. Phys. Acta,30 (1957) 409), who showed that a weaker condition, called “weak local commutativity” was sufficient for the validity of theCPT Theorem.Google Scholar
  40. [41]
    Massam T., Muller Th., Righini B., Schneegans M. andZichichi A.,Experimental Observation of Antideuteron Production,Nuovo Cimento,39 (1965) 10.Google Scholar
  41. [42]
    Ting S. S. C.,The Discovery of Nuclear Antimatter and the Origin of the AMS Experiment, inProceedings of the Symposium to celebrate the 30th anniversary of the Discovery of Nuclear Antimatter, edited byL. Maiani andR. A. Ricci,Proc. SIF, vol.53 (Editrice Compositori, Bologna) 1995, p. 21.Google Scholar
  42. [43]
    After the experimental discovery of the effect [1], W. F. Weisskopf and his student J. Bruce French were the first to correctly calculate the energy difference between the two energy levels of the hydrogen atom (22 S 1/2 22 P 1/2). Julian Schwinger and Richard Feynman were also engaged in the same calculations but both of them had made the same mistake, thus getting the same (wrong) answer. Unfortunately (for Weisskopf), both Schwinger and Feynman were in contact with Weisskopf who could not believe that these two extremely bright members of the younger generation of physicists engaged in computing this unexpected new “effect” could both be wrong. Thus Weisskopf decided to postpone the publication of his (correct) result. Meanwhile Lamb and his student Norman Kroll published their (correct) result (Kroll N. M. andLamb W. E.,On the Self-Energy of a Bound Electron,Phys. Rev.,75 (1949) 388) while Weisskopf was waiting for the cross-check (French J. B. and Weisskopf V. F.,The Electromagnetic Shift of Energy Levels, Phys. Rev.,75 (1949) 1240).Google Scholar
  43. [44]
    The first report on “scaling” was presented by J. I. Friedman at the 14th International Conference onHigh Energy Physics at Vienna, 28 August-5 September 1968. The report was presented as paper n. 563 but not published in the Conference Proceedings. It was published as a SLAC preprint. The SLAC data on scaling were included in the Panofsky general report to the Conference where he says «… the apparent success of the parametrization of the cross-sections in the variablev/q2 in addition to the large cross-section itself is at least indicative that point-like interactions are becoming involved», Panofsky W. K. H.,Low q2 Electrodynamics, Elastic and Inelastic Electron (and Muon) Scattering, inProceedings of the 14th International Conference on High Energy Physics, Vienna 1968, edited by J. Prentki and J. Steinberger (CERN) 1968, p. 23. The following physicists participated in the inelastic electron scattering experiments: W. B. Atwood, E. Bloom, A. Bodek, M. Breidenbach, G. Buschhorn, R. Cottrell, D. Coward, H. DeStaebler, R. Ditzler, J. Drees, J. Elias, G. Hartmann, C. Jordan, M. Mestayer, G. Miller, L. Mo, H. Piel, J. Poucher, C. Prescott, M. Riordan, L. Rochester, D. Sherden, M. Sogard, S. Stein, D. Trines and R. Verdier. For additional acknowledgements see Friedman J. I, Kendall H. W. and Taylor R. E.,Deep Inelastic Scattering: Acknowledgements, Les Prix Nobel 1990 (Almqvist and Wiksell, Stockholm/Uppsala) 1991, alsoRev. Mod. Phys.,63 (1991) 629. For a detailed reconstruction of the events see Friedman J. I.,Deep Inelastic Scattering Evidence for the Reality of Quarks, inHistory of Original Ideas and Basic Discoveries in Particle Physics, edited by H. B. Newman and T. Ypsilantis (Plenum Press, New York and London) 1994, p. 725.Google Scholar
  44. [45]
    Massam T. andZichichi A.,Quark Search at the ISR, CERN preprint, June 1968;Basile M., Cara Romeo G., Cifarelli L., Giusti P., Massam T., Palmonari F., Valenti G. andZichichi A.,Search for Fractionally Charged Particles Produced in Proton-Proton Collisions at the Highest ISR Energy, Nuovo Cimento A,40 (1977) 41;Basile M., Cara Romeo G., Cifarelli L., Contin A., D’Alì G., Giusti P., Massam T., Palmonari F., Sartorelli G., Valenti G. andZichichi A.,A Search for quarks in the CERN SPS Neutrino Beam, Nuovo Cimento A,45 (1978) 281.Google Scholar
  45. [46]
    Zichichi A.,New Developments in Elementary Particle Physics, Rivista Nuovo Cimento,2, n. 14 (1979). The statement on page 2 of this paper, «Unificationof all forces needs first a Supersymmetry. This can be broken later, thus generating the sequence of the various forces of nature as we observe them», was based on a work by A. Petermann and A. Zichichi where the renormalization group running of the couplings using supersymmetry was studied with the result that the convergence of the three couplings improved. This work was not published, but perhaps known to a few. The statement quoted is the first instance in which it was pointed out that supersymmetry may play an important role in the convergence of the gauge couplings. In fact, the convergence of three straight lines (α1/−1 α2/−1 α3/−1) with a change in slope is guaranteed by Euclidean geometry, as long as the point where the slope changes is tuned appropriately. What is non-trivial about the convergence of the couplings is that with the initial conditions given by the LEP results, the change in slope needs to be atMSVSY ∼ 1 TeV as claimed by the authors of ref. [49].Google Scholar
  46. [47]
    Anselmo F., Cifarelli L., Petermann A. andZichichi A.,The Effective Experimental Constraints on Msusy and Mgut,Nuovo Cimento A,104 (1991) 1817.Google Scholar
  47. [48]
    Anselmo F., Cifarelli L., Petermann A. andZichichi A.,The Simultaneous Evolution of Masses and Couplings: Consequences on Supersymmetry Spectra and Thresholds,Nuovo Cimento A,105 (1992) 1179.Google Scholar
  48. [49]
    Amaldi U., de Boer W. andFürstenau H.,Comparison of Grand Unified Theories with Electroweak and Strong Coupling Constants Measured at LEP,Phys. Lett. B,260 (1991) 447.Google Scholar
  49. [50]
    Yukawa H.,Interaction of Elementary Particles. Part I.,Proc. Physico-Math. Soc. Jpn.,17 (1935) 48;Yukawa H.,Models and Methods in the Meson Theory, Rev. Mod. Phys.,21 (1949) 474.Google Scholar
  50. [51]
    Anderson C. D. andNeddermeyer S. H.,Cloud Chamber Observations of Cosmic Rays at 4300Meters Elevation and Near Sea Level,Phys. Rev.,50 (1936) 263.Google Scholar
  51. [52]
    Conversi M., Pancini E. andPiccioni O.,On the Disintegration of Negative Mesons,Phys. Rev.,71 (1947) 209.Google Scholar
  52. [54]
    Danby G., Gaillard J.-M., Goulianos K., Lederman L. M., Mistry N., Schwartz M. andSteinberger J.,Observations of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos,Phys. Rev. Lett.,9 (1962) 36.Google Scholar
  53. [55]
    Klein O.,Mesons and Nucleons,Nature,161 (1948) 897.Google Scholar
  54. [56]
    Lee T. D., Rosenbluth M. andYang C. N.,Interaction of Mesons with Nucleons and Light Particles,Phys. Rev.,75 (1949) 905.Google Scholar
  55. [57]
    Tiomno J. andWheeler J. A.,Energy Spectrum of Electrons from Meson Decay,Rev. Mod. Phys.,21 (1949) 144.Google Scholar
  56. [58]
    Charpak G., Farley F., Garwin R. L., Muller T., Sens J. C., Telegdi V. L., York C. M. andZichichi A.,The Anomalous Magnetic Moment of the Muon, inProceedings of the International Conference on High-Energy Physics, Rochester, N.Y., USA, 25 August–1 September 1960 (University of Rochester) 1960, p. 778.Google Scholar
  57. [59]
    Charpak G., Farley F. J., Garwin R. L., Muller T., Sens J. C., Telegdi V. L. andZichichi A.,Measurement of the Anomalous Magnetic Moment of the Muon,Phys. Rev. Lett.,6 (1961) 128.Google Scholar
  58. [60]
    Charpak G., Farley F. J., Garwin R. L., Muller T., Sens J. C. andZichichi A.,A New Measurement of the Anomalous Magnetic Moment of the Muon,Phys. Lett.,1 (1962) 16.Google Scholar
  59. [61]
    Charpak G., Farley F. J., Garwin R. L., Müller T., Sens J. C. andZichichi A.,(g∼-2) and Its Consequences, inProceedings of the International Conference on High-Energy Physics,Geneva, Switzerland,4–11 July 1962 (CERN, Geneva) 1962, p. 476.Google Scholar
  60. [62]
    Charpak G., Farley F. J., Garwin R. L., Muller Th., Sens J. C. andZichichi A.,The Anomalous Magnetic Moment of the Muon,Nuovo Cimento,37 (1965) 1241.Google Scholar
  61. [63]
    Farley F. J., Massam T., Muller T. andZichichi A.,A Measurement of the μ + Lifetime, inProceedings of the International Conference on High-Energy Physics,Geneva, Switzerland,4–11 July 1962 (CERN, Geneva) 1962, p. 415;Zichichi A.,CERN Work on Weak Interactions, in theFebruary 1964 Meeting of the Royal Society, Proc. R. Soc. London, Ser. A,285 (1965) 175.Google Scholar
  62. [64]
    Buhler A., Cabibbo N., Fidecaro M., Massam T., Muller Th., Schneegans M. andZichichi A.,A Measurement of the e+ Polarization in Muon Decay: the e+ Annihilation Method,Phys. Lett.,7 (1963) 368.Google Scholar
  63. [65]
    Kemmer N.,Charge-Dependence of Nuclear Forces,Proc. Cambridge Phil. Soc.,34 (1938) 354;Kemmer N.,Quantum Theory of Einstein-Bose Particles and Nuclear Interaction, Proc. R. Soc. London, Ser. A,166 (1938) 127.Google Scholar
  64. [66]
    Lewis H. W., Oppenheimer J. R. andWouthuysen S. A.,The Multiple Production of Mesons,Phys. Rev.,73 (1948) 127.Google Scholar
  65. [67]
    Carlson A. G., Hooper J. E. andKing D. T.,The Neutral Mesons,Philos. Mag.,41 (1950) 701.Google Scholar
  66. [68]
    Bjorklund R., Crandall W. E., Moyer B. J. andYork H. F.,High Energy Photons from Proton-Nucleon Collisions,Phys. Rev.,77 (1950) 213.Google Scholar
  67. [69]
    Panofsky W. K. H., Aamodt R. L. andYork H. F.,The Gamma-Ray Spectrum from the Absorption of π-Mesonsin Hydrogen,Phys. Rev.,78 (1950) 825;Panofsky W. K. H., Aamodt R. L. and Hadley J.,The Gamma-Ray Spectrum Resulting from Capture of Negative π-Mesons in Hydrogen and Deuterium, Phys. Rev.,81 (1951) 565.Google Scholar
  68. [70]
    Ekspong G.,Recension: The Origin of the Concept of Nuclear Forces by Brown L. M. and Rechenberg H., Institute of Physics Publishing, Bristol and Philadelphia, 1966,Nucl. Instrum Methods A,394 (1997) 273.Google Scholar
  69. [71]
    Schwinger J.,On Gauge Invariance and Vacuum Polarization,Phys. Rev.,82 (1951) 664.MathSciNetGoogle Scholar
  70. [72]
    Gell-Mann M. andLévy M.,The Axial Vector Current in Beta Decay,Nuovo Cimento,16 (1960) 705.Google Scholar
  71. [73]
    Sutherland D. G.,Current Algebra and Some non-Strong Mesonic Decays,Nucl. Phys. B,2 (1967) 433.Google Scholar
  72. [74]
    Veltman M.,Theoretical Aspects of High Energy Neutrino Interactions,Proc. R. Soc. London, Ser. A,301 (1967) 107.Google Scholar
  73. [75]
    Bell J. S. andJackiw R.,A PCAC Puzzle:π0→γγin the σ-Model,Nuovo Cimento A,60 (1969) 47.Google Scholar
  74. [76]
    Adler S. L.,Axial-Vector Vertex in Spinor Electrodynamics,Phys. Rev.,177 (1969) 2426.Google Scholar
  75. [77]
    Adler S. L. andBardeen W. A.,Absence of Higher-Order Corrections in the Anomalous Axial-Vector Divergence Equation,Phys. Rev.,182 (1969) 1517.Google Scholar
  76. [78]
    Bardeen W. A.,Anomalous Ward Identities in Spinor Field Theories,Phys. Rev.,184 (1969) 1848.Google Scholar
  77. [79]
    ’t Hooft G.,Magnetic Monopoles in Unified Gauge Theories,Nucl. Phys. B,79 (1974) 276.MathSciNetGoogle Scholar
  78. [80]
    Polyakov A. M.,Particle Spectrum in Quantum Field Theory,Zh. Ėksp. Teor. Fiz. Pisma Red.,20 (1974) 430.Google Scholar
  79. [81]
    Belavin A. A., Polyakov A. M., Schwartz A. S. andTyupkin Yu. S.,Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B,59 (1975) 85.MathSciNetGoogle Scholar
  80. [82]
    ’t Hooft G.,Computation of the Quantum Effects due to a four-Dimensional Pseudoparticle, Phys. Rev. D,14 (1976) 3432;Phys. Rev. D,18 (1978) 2199 (Erratum).Google Scholar
  81. [83]
    ’t Hooft G.,Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett.,37 (1976) 8.Google Scholar
  82. [84]
    ’t Hooft G.,How Instantons Solve the U(1)Problem, Phys. Rep.,142 (1986) 357.MathSciNetGoogle Scholar
  83. [85]
    Dalitz R. H.,On the Analysis of τ-Meson data and the Nature of the τ-Meson, Philos. Mag.,44 (1953) 1068;Dalitz R. H.,Isotopic Spin Changes in τ and θ Decay, Proc. Phys. Soc. A,69 (1956) 527; Dalitz R. H.,Present Status of τ Spin-Parity, inProceedings of the Sixth Annual Rochester Conference on High Energy Nuclear Physics (Interscience Publishers, Inc., New York) 1956, p. 19; for a detailed record of the events which led to the (θ-τ) puzzle see Dalitz R. H.,Kaon Decays to Pions: the τ-θ Problem, inHistory of Original Ideas and Basic Discoveries in Particle Physics, edited by H. B. Newman and T. Ypsilantis (Plenum Press, New York, London) 1994, p. 163.Google Scholar
  84. [86]
    Gell-Mann M. andPais A.,Behavior of Neutral Particles under Charge Conjugation, Phys. Rev.,97 (1955) 1387.MathSciNetGoogle Scholar
  85. [87]
    Lande K., Booth E. T., Impeduglia J., Lederman L. M. andChinowski W.,Observation of Long-Lived Neutral V Particles, Phys. Rev.,103 (1956) 1901.Google Scholar
  86. [88]
    Adair R., Chinowsky W., Crittenden R., Leipuner L. B., Musgrave B. andShively F. T.,Anomalous Regeneration of K10 Mesons from K20 Mesons, Phys. Rev.,132 (1963) 2285.Google Scholar
  87. [89]
    Wu C. S., Lee T. D., Cabibbo N., Weisskopf V. F., Ting S. C. C., Villi C., Conversi M., Petermann A., Wiik B. H. andWolf G.,The Origin of the Third Family, edited byO. Barnabei,L. Maiani,R. A. Ricci andF. Roversi Monaco (Academy of Sciences, Bologna University, INFN, SIF, Rome) 1997 and (World Scientific) 1998.Google Scholar
  88. [90]
    Gell-Mann M.,The Eightfold Way — A Theory of Strong-Interaction Symmetry, California Institute of Technology Synchrotron Lab. Report, 20 (1961); Ne’eman Y.,Derivation of Strong Interactions from a Gauge Invariance, Nucl. Phys.,26 (1961) 222; The experimental confirmation, in 1964, by Samios and collaborators [91] of the existence of the missing member of the baryonic decuplet, Ω, appeared to be, at the time, a triumph for the “eightfold way”. The choice of the letter Ω, the last in the Greek alphabet, was due to the conviction that this particle was going to be the last ever to be discovered. See also: M. Gell-Mann and Ne’eman Y.,The Eightfold Way (W. A. Benjamin inc., New York and Amsterdam) 1964.Google Scholar
  89. [91]
    Barnes V. E., Connolly P. L., Crennell D. J., Culwick B. B., Delaney W. C., Fowler W. B., Hagerty P. E., Hart E. L., Horwitz N., Hough P. V. C., Jensen J. E., Kopp J. K., Lai K. W., Leitner J., Lloyd J. L., London G. W., Morris T. W., Oren Y., Palmer R. B., Prodell A. G., Radojictc D., Rahm D. C., Richardson C. R., Samios N. P., Sanford J. R., Shutt R. P., Smith J. R., Stonehill D. L., Strand R. C., Thorndike A. M., Webster M. S., Willis W. J. andYamamoto S. S.,Observation of a Hyperon with Strangeness Minus Three, Phys. Rev. Lett.,12 (1964) 204.Google Scholar
  90. [92]
    Gell-Mann M.,A Schematic Model of Baryons and Mesons, Phys. Lett.,8 (1964) 214;Zweig G.,Fractionally Charged Particles and SU 6, CERN Report TH,401 (1964), and Erice Lecture 1964, inSymmetries in Elementary Particle Physics, edited by A. Zichichi (Academic Press, New York, London) 1965.Google Scholar
  91. [93]
    Lipkin H. J.,Particle Physics for Nuclear Physicists, inPhysique Nucléaire, Les-Houches 1968, edited byC. De Witt andV. Gillet (Gordon and Breach, N.Y.) 1969, p. 585;Lipkin H. J.,Triality, Exotics and the Dynamical Basis of the Quark Model, Phys. Lett. B,45 (1973) 267;Nambu Y.,A Systematics of Hadrons in Subnuclear Physics, inPreludes in Theoretical Physics, edited by A. de-Shalit, H. Feshbach and L. Van Hove (North Holland Pub. Comp., Amsterdam) 1966, p. 133.Google Scholar
  92. [94]
    Greenberg O. W.,Spin and Unitary-Spin Independence in a Paraquark Model of Baryons and Mesons, Phys. Rev. Lett.,13 (1964) 598.Google Scholar
  93. [95]
    Han M. Y. andNambu Y.,Three-Triplet Model with Double SU(3)Symmetry, Phys. Rev. B,139 (1965) 1006.MathSciNetGoogle Scholar
  94. [96]
    Fritzsch H., Gell-Mann M. andLeutwyler H.,Advantages of the Color Octet Gluon Picture, Phys. Lett. B,47 (1973) 365.Google Scholar
  95. [97]
    ’t Hooft G.,Can We Make Sense Out of Quantum Chromodynamics?, inThe Whys of Subnuclear Physics, Erice 1977, edited byA. Zichichi (Plenum Press, New York and London) 1978, p. 943.Google Scholar
  96. [98]
    ’t Hooft G.,Gauge Theories with Unified, Weak, Electromagnetic and Strong Interactions, inEPS Int. Conf. on High Energy Physics, Palermo, 23–28 June 1975, edited byA. Zichichi (Editrice Compositori, Bologna) 1976, p. 1225.Google Scholar
  97. [99]
    Lee T. D.,Are Matter and Antimatter Symmetric?, inProceedings of the Symposium to celebrate the 30th anniversary of the Discovery of Nuclear Antimatter, edited byL. Maiani andR. A. Ricci,Proc. SIF, Vol. 53 (Editrice Compositori, Bologna) 1995, p. 1.Google Scholar
  98. [100]
    Zichichi A.,The Antideuteron Experiment — Recollections of the fine times and closing remarks, inProceedings of the Symposium to celebrate the 30th anniversary of the Discovery of Nuclear Antimatter, edited byL. Maiani andR. A. Ricci,Proc. SIF, Vol. 53 (Editrice Compositori, Bologna) 1995, p. 123.Google Scholar
  99. [101]
    Maiani L. andRicci R. A. (Editors),The Discovery of Nuclear Antimatter, Proc. SIF, Vol. 53 (Editrice Compositori, Bologna) 1995.Google Scholar
  100. [102]
    Feldman G. J., e+e Annihilation into Hadrons at SPEAR, inE.P.S. Int. Conf. on High Energy Physics, Palermo, 23–28 June 1975, edited byA. Zichichi (Editrice Compositori, Bologna) 1976, p. 233.Google Scholar
  101. [103]
    Villi C.,The Basic Steps which Led to the Discovery of the Heavy Lepton τ: a Historical Record, inThe Origin of the Third Family, edited byO. Barnabei,L. Maiani,R. A. Ricci andF. Roversi Monaco (Academy of Sciences, Bologna University, INFN, SIF, Rome) and World Scientific 1998.Google Scholar
  102. [104]
    Aubert J. J., Becker U., Biggs P. J., Burger J., Chen M., Everhart G., Goldhagen P., Leong J., McCorriston T., Rhoades T. G., Rohde M., Ting S. C. C., Wu S. L. andLee Y. Y.,Experimental Observation of a Heavy Particle J,Phys. Rev. Lett.,33 (1974) 1404.Google Scholar
  103. [105]
    Augustin J.-E., Boyarski A. M., Breidenbach M., Bulos F., Dakin J. T., Feldman G. J., Fischer G. E., Fryberger D., Hanson G., Jean-Marie B., Larsen R. R., Lüth V., Lynch H. L., Lyon D., Morehouse C. C., Paterson J. M., Perl M. L., Richter B., Rapidis P., Schwitters R. F., Tanenbaum W. M., Vannucci F., Abrams G. S., Briggs D., Chinowsky W., Friedberg C. E., Goldhaber G., Hollebeck R. J., Kadyk J. A., Lulu B., Pierre F., Trilling G. H., Whitaker J. S., Wiss J. andZipse J. E.,Discovery of a Narrow Resonance in e+ e Annihilation, Phys. Rev. Lett.,33 (1974) 1406.Google Scholar
  104. [106]
    A record of the annual evolution in the multitude of baryonic and mesonic states can be found in the proceedings of the Erice Schools [11]. An example of the proliferation in the meson resonances isMeson Resonances and Related Electromagnetic Phenomena, inProceedings of the EPS Conference, Bologna, 1971, edited byR. H. Dalitz andA. Zichichi (Editrice Compositori, Bologna) 1972.Google Scholar
  105. [107]
    Zichichi A.,First Search for Sequential Heavy Leptons at ADONE, CERN-PPE/93-58 and CERN/LAA/93-18, 2 April 1993. Presented at theSymposium on The τ particle, in honour of Martin Perl’s 65th birthday, SLAC., Stanford, CA, USA, 24 July 1992;and in the Proceedings of the Summer Institute on Particle Physics “The Third Family and the Physics of Flavor”, edited by L. Vassilllian, SLAC CONF-9207140 UC-414 (T/E) (1993) p. 603.Google Scholar
  106. [108]
    Herb S. W., Hom D. C., Lederman L. M., Sens J. C., Snyder H. D., Yoh J. K., Appel J. A., Brown B. C., Brown C. N., Innes W. R., Ueno K., Yamanouchi T., Ito A. S., Jöstlein H., Kaplan D. M. andKephart R. D.,Observation of a Dimuon Resonance at 9.5 GeVin 400 GeVProton-Nucleus Collisions, Phys. Rev. Lett.,39 (1977) 252;Innes W. R., Appel J. A., Brown B. C., Brown C. N., Ueno K., Yamanouchi T., Herb S. W., Hom D. C., Lederman L. M., Sens J. C., Snyder H. D., Yoh J. K., Fisk R. J., Ito A. S., Jöstlein H., Kaplan D. M. andKephart R. D.,Observation of Structure in the Y Region, Phys. Rev. Lett.,39 (1977) 1240;Ueno K., Brown B. C., Brown C. N., Innes W. R., Kephart R. D., Yamanouchi T., Herb S. W., Hom D. C., Lederman L. M., Snyder H. D., Yoh J. K., Fisk R. J., Ito A. S., Jöstlein H. andKaplan D. M.,Evidence for the Y and a Search for New Narrow Resonances, Phys. Rev. Lett.,42 (1979) 486.Google Scholar
  107. [109]
    Basile M., Berbiers J., Cara Romeo G., Cifarelli L., Contin A., D’Alì G., Del Papa C., Giusti P., Massam T., Nania R., Palmonari F., Sartorelli G., Spinetti M., Susinno G., Votano L. andZichichi A.,The End of a Myth: High-P T Physics, inQuarks, Leptons, and their Constituents, Erice 1984, edited byA. Zichichi (Plenum Press, New York and London) 1988, p. 1.Google Scholar
  108. [110]
    Taylor T., Wenninger H. andZichichi A., “Leading”Physics at LHC Including Machine Studies Plus Detector R&D (LAA), Nuovo Cimento A,108 (1995) 1477; and inVacuum and Vacua — The Physics of Nothing, Erice 1995, edited byA. Zichichi (World Scientific) 1996, p. 381.Google Scholar
  109. [111]
    Basile M., Cara Romeo G., Cifarelli L., Contin A., D’Alì G., Di Cesare P., Esposito B., Giusti P., Massam T., Nania R., Palmonari F., Rossi V., Sartorelli G., Spinetti M., Susinno G., Valenti G., Votano L. andZichichi A.,The “Leading”-Baryon Effect in Strong, Weak, and Electromagnetic Interactions, Lett. Nuovo Cimento,32 (1981) 321.Google Scholar
  110. [112]
    Basile M., Bonvicini G., Cara Romeo G., Cifarelli L., Contin A., Curatolo M., D’Alì G., Esposito B., Giusti P., Massam T., Nania R., Palmonari F., Petrosino A., Rossi V., Sartorelli G., Spinetti M., Susinno G., Valenti G., Votano L. andZichichi A.,What Can We Learn From High-Energy, Soft (pp)Interactions, inThe Unity of the Fundamental Interactions, Erice 1981, edited byA. Zichichi (Plenum Press, New York and London) 1983, p. 695.Google Scholar
  111. [113]
    For a complete set of references concerning this topic, see:V. N. Gribov, G. ’t Hooft, G. Veneziano andV. F. Weisskopf,The Creation of Quantum ChromoDynamics and the Effective Energy, edited byN. L. Lipatov (World Scientific) 1998.Google Scholar
  112. [114]
    Cifarelli L., Massam T., Migani D. andZichichi A.,Evidence for η′ Leading, presented at the35th Course of the Ettore Majorana International School of Subnuclear Physics,Erice, Italy, 26 August–4 September 1997. See also Migani D.,Thesis, Bologna University (July 1997).Google Scholar
  113. [115]
    Zichichi A.,The Gran Sasso Laboratory and the Eloisatron Project, inOld and New Forces of Nature, Erice 1985, edited byA. Zichichi (Plenum Press, New York and London) 1988, p. 335.Google Scholar
  114. [116]
    Goldstone J.,Field Theories with Superconductor Solutions, Nuovo Cimento,19 (1961) 154.MathSciNetGoogle Scholar
  115. [117]
    Kalbfleisch G. R., Alvarez L. W., Barbaro-Galtieri A., Dahl O. I., Eberhard P., Humphrey W. E., Lindsey J. S., Merrill D. W., Murray J. J., Rittenberg A., Ross R. R., Shafer J. B., Shively F. T., Siegel D. M., Smith G. A. andTripp R. D.,Observation of a Nonstrange Meson of Mass 959 MeV,Phys. Rev. Lett.,12 (1964) 527;Goldberg M., Gundzik M., Lichtman S., Leitner J., Primer M., Connolly P. L., Hart E. L., Lai K. W., London G., Samios N. P. andYamamoto S. S.,Existence of a New Meson of Mass 960 MeV,Phys. Rev. Lett.,12 (1964) 546.Google Scholar
  116. [118]
    Bollini D., Buhler-Broglin A., Dalpiaz P., Massam T., Navach F., Navarria F. L., Schneegans M. A. andZichichi A.,Evidence for a New Decay Mode of the X 0-Meson: X0→2γ,Nuovo Cimento A,58 (1968) 289.Google Scholar
  117. [119]
    Bollini D., Buhler-Broglin A., Dalpiaz P., Massam T., Navach F., Navarria F. L., Schneegans M. A. andZichichi A.,The Decay Mode ω→e+e and a Direct Determination of the ω-ϕ Mixing Angle, Nuovo Cimento A,57 (1968) 404; see also Bollini D., Buhler-Broglin A., Dalpiaz P., Massam T., Navach F., Navarria F. L., Schneegans M. A. and Zichichi A.,Observation of the Rare Decay Mode of the ϕ-Meson: ϕ→e+e,Nuovo Cimento A 56 (1968) 1173.Google Scholar
  118. [120]
    Zicmchi A.,The Basic SU(3)Mixing: ω↔ω1, inEvolution of Particle Physics (Academic Press Inc., New York, London) 1970, p. 299.Google Scholar
  119. [121]
    Dalpiaz P., Frabetti P. L., Massam T., Navarria F. L. andZichichi A.,Measurement of the Branching Ratio Γ(X0→γγ)/Γ(X0→TOTAL),Phys. Lett. B,42 (1972) 377.Google Scholar
  120. [122]
    Anselmo F., Cifarelli L., Petermann A. andZichichi A.,The Convergence of the Gauge Couplings at EGUT and Above: Consequences for α3(Mz)and SUSY Breaking, Nuovo Cimento A,105 (1992) 1025.Google Scholar
  121. [123]
    Anselmo F., Cifarelli L., Petermann A. andZichichi A.,Analytic Study of the Supersymmetry-Breaking Scale at Two Loops, Nuovo Cimento A,105 (1992) 1201;Petermann A. andZichichi A.,The Full Two-Loop Approach to the Problem of the Light Supersymmetric Threshold, Nuovo Cimento A,108 (1995) 105.Google Scholar
  122. [124]
    Zichichi A.,Understanding Where the Supersymmetry Threshold Should Be, inProceedings of the Workshop on Ten Years of SUSY Confronting Experiment, CERN,Geneva, Switzerland, 7–9 September 1992, CERN-TH 6707/92-PPE/92-180, 94. CERN-PPE/92-149 and CERN/LAA/MSL/92-017, 7 September 1992.Google Scholar
  123. [125]
    Lopez J. L., Nanopoulos D. V., Park G. T. andZichichi A.,New Precision Electroweak Tests of SU(5)×U(1)Supergravity, Phys. Rev. D,49 (1994) 4835.Google Scholar
  124. [126]
    Lopez J. L., Nanopoulos D. V. andZichichi A.,The Simplest, String-Derivable,Supergravity Model and its Experimental Predictions, Phys. Rev. D,49 (1994) 343.Google Scholar
  125. [127]
    Anselmo F., Anzivino G., Arzarello F., Bari G., Basile M., Barillari T., Bellagamba L., Berbiers J., Bertin R., Block F., Boscherini D., Bruni G., Bruni P., Cara Romeo G.,Chiarini M., Cifarelli L., Cindolo F., Ciralli F., Contin A., Crotty I., D’Ambrosio C., Dardo M., De Pasquale S., De Salvo R.,Fava L., Frasconi F., Ford P., Giusti P., Gys T., Hatzifotiadou D., Hourican M., Kaur M., Iacobucci G., La Commare G., Lamas Valverde J., Larsen H., Laurenti G., Leutz H., Levi G., Lopez J. L., Maccarrone G., Margotti A., Marino M., Massam T., Menshikov A., Musso C., Nania R., Nanopoulos D. V., Nemoz C., Panzieri D., Peterman A., Piedigrossi D., Puertolas D., Pois H., Qian S., Ruffino E., Sartorelli G., Schipper I., Seguinot J., Tailhardat S., Timellini R., Vivargent M., Wang X., Williams M. C. S., Ypsilantis T. andZichichi A.,Acoplanar Di-Leptons and Mixed Events on the Basis of two Supergravity Model Predictions, Nuovo Cimento A,106 (1993) 1389.Google Scholar
  126. [128]
    Lopez J. L., Nanopoulos D. V., Park G. T., Wang X. andZichichi A.,Experimental Aspects of SU(5) × U(1)Supergravity, Phys. Rev. D,50 (1994) 2164.Google Scholar
  127. [129]
    Lopez J. L., Nanopoulos D. V. andZichichi A.,A String no-Scale Supergravity Model and its Experimental Consequences, Phys. Rev. D,52 (1995) 4178.Google Scholar
  128. [130]
    Lopez J. L., Nanopoulos D. V. andZichichi A.,No-Scale Supergravity Confronts LEP Diphoton Events, October 1996 —hep-ph/9610235.Google Scholar
  129. [131]
    Anselmo F., Cifarelli L. andZichichi A.,A Study of the Various Approaches to MGUT and αGUT,Nuovo Cimento A,105 (1992) 1335.Google Scholar
  130. [132]
    Anselmo F., Cifarelli L. andZichichi A., Aχ2-Testto Study the α1, α2, α3 Convergence for High-Precision LEP data, Having in Mind the SUSY Threshold, Nuovo Cimento A,105 (1992) 1357.Google Scholar
  131. [133]
    Tomonaga S.,On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields, Prog. Theor. Phys.,1 (1946) 27;Koba Z., Tati T. andTomonaga S.,On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II., Prog. Theor. Phys.,2 (1947) 101, 198;Kanesawa S. andTomonaga S.,On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. V., Prog. Theor. Phys.,3 (1948) 101;Tomonaga S.,On Infinite Field Reactions in Quantum Field Theory, Phys. Rev.,74 (1948) 224.MathSciNetGoogle Scholar
  132. [134]
    Schwinger J.,On Quantum-Electrodynamics and the Magnetic Moment of the Electron,Phys. Rev.,73 (1948) 416;Schwinger J.,Quantum Electro-dynamics. I. A Covariant Formulation, Phys. Rev.,74 (1948) 1439.MathSciNetGoogle Scholar
  133. [135]
    Feynman R. P.,Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys.,20 (1948) 367;Peynman R. P.,A Relativistic Cut-Off for Classical Electrodynamics, Phys. Rev.,74 (1948) 939;Feynman R. P.,Relativistic Cut-Off for Quantum Electrodynamics, Phys. Rev.,74 (1948) 1430;Wheeler J. A. andFeynman R. P.,Interaction with the Absorber as the Mechanism of Radiation, Rev. Mod. Phys.,17 (1945) 157.MathSciNetGoogle Scholar
  134. [136]
    Dyson F. J.,The Radiation Theories of Tomonaga, Schwinger, and Feynman, Phys. Rev.,75 (1949) 486.MathSciNetGoogle Scholar
  135. [137]
    Dyson F. J.,The S Matrix in Quantum Electrodynamics, Phys. Rev.,75 (1949) 1736.MathSciNetGoogle Scholar
  136. [138]
    Proceedings of the 12th Solvay Conference on “The Quantum Theory of Fields”, University of Brussels, October 1961 (Interscience Publishers, New York) 1961.Google Scholar
  137. [139]
    Stueckelberg E. C. G. andPetermann A.,The Normalization Group in Quantum Theory, Helv. Phys. Acta,24 (1951) 317;Stueckelberg E. C. G. andPetermann A.,La Normalisation des Constantes dans la Théorie des Quanta, Helv. Phys. Acta,26 (1953) 499;Bogoliubov N. N. andShirkov D. V.,Introduction to the Theory of Quantized Fields (Interscience Publishers, New York) 1959;Petermann A.,Renormalization Group and the Deep Structure of the Proton, Phys. Rep.,53 (1979) 157.Google Scholar
  138. [140]
    Gell-Mann M. andLow F. E.,Quantum Electrodynamics at Small Distances, Phys. Rev.,95 (1954) 1300.MathSciNetGoogle Scholar
  139. [141]
    For a lucid decription of the subject seeColeman S.,Renormalization and Symmetry: a review for Non-Specialists, inProperties of the Fundamental Interactions, Erice 1971, edited byA. Zichichi (Editrice Compositori, Bologna) 1973, p. 605;Collins J. C.,Renormalization (Cambridge University Press) 1984.Google Scholar
  140. [142]
    ’t Hooft G. andVeltman M.,Regularization and Renormalization of Gauge Fields, Nucl. Phys. B,44 (1972) 189.MathSciNetGoogle Scholar
  141. [143]
    Bollini C. G. andGiambiagi J. J.,Lowest Order Divergent Graphs in v-Dimensional Space, Phys. Lett. B,40 (1972) 566;Ashmore J. F.,A Method of Gauge-Invariant Regularization, Lett. Nuovo Cimento,4 (1972) 289.Google Scholar
  142. [144]
    Coleman S.,Secret Symmetry. An Introduction to Spontaneous Symmetry Breakdown and Gauge Fields, inLaws of Hadronic Matter, Erice 1973, edited byA. Zichichi (Academic Press, New York, London) 1975, p. 139.Google Scholar
  143. [145]
    ’t Hooft G.,Renormalization of Massless Yang-Mills Fields, Nucl. Phys. B,33 (1971) 173.Google Scholar
  144. [146]
    ’t Hooft G.,Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. B,35 (1971) 167.Google Scholar
  145. [147]
    ’t Hooft G. andVeltman M.,Combinatorics of Gauge Fields, Nucl. Phys. B,50 (1972) 318.MathSciNetGoogle Scholar
  146. [148]
    Zichichi A. (Editor),The Superworld I, Erice 1986 (Plenum Press, New York, London) 1990;The Superworld II, Erice 1987 (Plenum Press, New York, London) 1990;The Superworld III, Erice 1988 (Plenum Press, New York, London) 1990.Google Scholar
  147. [149]
    Maiani L.,All You need to Know about the Higgs Boson, inProceedings Ecole d’Ete de Physique des Particules, Gif-Sur-Yvette (1979) p. 45.Google Scholar
  148. [150]
    ’t Hooft G.,Under the Spell of the Gauge Principle (World Scientific) 1994.Google Scholar
  149. [151]
    Landau L. D.,Fundamental Problems, inTheoretical Physics in the Twentieth Century;a Memorial Volume to Wolfgang Pauli, edited byM. Fierz andV. F. Weisskopf (Interscience Publishers, New York) 1960, pp. 245–248; Landau L. D. and Pomeranchuk I.,On Point Interaction in Quantum Electrodynamics, Dokl Akad. Nauk SSSR,102 (1955) 489;Landau L. D.,On the Quantum Theory of Fields, Niels Bohr and the Development of Physics, edited byW. Pauli (Pergamon Press, New York) 1955, pp. 52–69. For a discussion of the basic problems see Wightman A. S.,Should we Believe in Quantum Field Theory?, inThe Whys of Subnuclear Physics, Erice 1977, edited by A. Zichichi (Plenum Press, New York, London) 1979, p. 983.Google Scholar
  150. [152]
    Glashow S. L.,Partial-Symmetries of Weak Interactions, Nucl. Phys.,22 (1961) 579.Google Scholar
  151. [153]
    Feynman R. P.,Quantum Theory of Gravitation, Acta Phys. Polonica,24 (1963) 697.MathSciNetGoogle Scholar
  152. [154]
    Veltman M.,Unitarity and Causality in a Renormalizable Field Theory with Unstable Particles, Physica,29 (1963) 186;Veltman M.,Perturbation Theory of Massive Yang-Mills Fields, Nucl. Phys. B,7 (1968) 637;Reiff J. andVeltman M.,Massive Yang-Mills Fields, Nucl. Phys. B,13 (1969) 545;Veltman M.,Generalized Ward Identities and Yang-Mills Fields, Nucl. Phys. B,21 (1970) 288; van Dam H. and Veltman M.,Massive and Mass-Less Yang-Mills and Gravitational Fields, Nucl. Phys. B,22 (1970) 397.MathSciNetGoogle Scholar
  153. [155]
    Salam A. andWard J. C.,Electromagnetic and Weak Interactions, Phys. Lett.,13 (1964) 168;Weinberg S.,A Model of Leptons, Phys. Rev. Lett.,19 (1967) 1264;Salam A.,Weak and Electromagnetic Interactions, Nobel Symposium 1968, edited byN. Svartholm (Almqvist and Wiksell, Wiley Interscience) 1968, p. 367.MathSciNetGoogle Scholar
  154. [156]
    Becchi C., Rouet A. andStora R.,Renormalization of the Abelian Higgs-Kibble Model,Commun. Math. Phys.,42 (1975) 127;Becchi C., Rouet A. andStora R.,Renormalization of Gauge Theories, Ann. Phys.,98 (1976) 287;Tyutin I. V.,Lebedev Preprint FIAN (1975) 39, unpublished.MathSciNetGoogle Scholar
  155. [157]
    Cabibbo N.,Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett.,10 (1963) 531.Google Scholar
  156. [158]
    Cabibbo N.,Leptonic Decays and the Unitary Symmetry, inStrong Electromagnetic and Weak Interactions, Erice 1963, edited byA. Zichichi (W. A. Benjamin Inc, New York, Amsterdam) 1964, p. 191.Google Scholar
  157. [159]
    Feynman R. P.,Consequences of SU(3)Symmetry in Weak Interactions, inSymmetries in Elementary Particle Physics, Erice 1964, edited byA. Zichichi (Academic Press, New York, London) 1965, p. 111.Google Scholar
  158. [160]
    Gell-Mann M. andLevy M.,Nuovo Cimento,16 (1960) 705; in a footnote of this paper (already quoted [72] and where the authors present the σ-model) the authors suggest that a parameter can be associated with the “strange” currents in order not to spoil the universality of the Fermi coupling.MathSciNetGoogle Scholar
  159. [161]
    Glashow S. L., Iliopoulos J. andMaiani L.,Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D,2 (1970) 1285.Google Scholar
  160. [162]
    Kobayashi M. andMaskawa T.,CP-Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys.,49 (1973) 652.Google Scholar
  161. [163]
    Bell J. S.,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, London) 1987.Google Scholar
  162. [164]
    Treiman S. B., Jackiw R., Zumino B. andWitten E. (Editors),Current Algebra and Anomalies (World Scientific) 1986, p. 81, 211.Google Scholar
  163. [165]
    Jackiw R. andRebbi C.,Vacuum Periodicity in a Yang-Mills Quantum Theory, Phys. Rev. Lett.,37 (1976) 172; for a clear lecture on the topic see Coleman S.,The uses of instantons, inThe Whys of Subnuclear Physics, Erice 1977, edited by A. Zichichi (Plenum Press, New York, London) 1979, p. 805.Google Scholar
  164. [166]
    Callan C. G., Dashen R. F. andGross D. J.,The Structure of the Gauge Theory Vacuum,Phys. Lett. B,63 (1976) 334.Google Scholar
  165. [167]
    Coleman S.,The uses of instantons, inThe Whys of Subnuclear Physics, Erice 1977, edited byA. Zichichi (Plenum Press, New York and London) 1979, p. 805.Google Scholar
  166. [168]
    Zichichi A.,The INFN Eloisatron Project, inProceedings of the HARC ’93 International Worskop (World Scientific) 1994, p. 363.Google Scholar
  167. [169]
    Basile M., Berbiers J., Bonvicini G., Boschi E., Cabibbo N., Cara Romeo G., Cifarelli L., Civita M., Contin A., Curatolo M., D’Alì G., Dardo M., Del Papa C., Esposito B., Ferrario L., Ferrero M. I., Galassini S., Giusti P., Laakso I., Leo A. R., Leo M., Luches G., Lunardi P., Marino A., Massam T., Nania R., Nassisi V., Palmonari F., Puglisi M., Resmini F., Rizzuto C., Rotelli P., Sartorelli G., Soliani G., Spinetti M., Stringa L., Susinno G., Tazzari S., Votano L. andZichichi A.,Eloisatron (The European LOng Intersecting Storage Accelerator), INFN/AE-83/7, June 1983; INFN/AE-84/2, January 1984 (revised version 1985); presented at theGalileo Galilei and Alfred B. Nobel Celebrations “Science for Peace”, Sanremo and Rome, Italy, 1–11 May 1983.Google Scholar
  168. [170]
    Aglietta C., Alberini C., Badino G., Baei G., Basile M., Bassetti M., Berbiers J., Bertin A., Boschi E., Braginski V., Bruzzese R., Cabibbo N., Cara Romeo G., Casaccia R., Castagnoli C., Castellina A., Castelvetri A., Cifarelli L., Cindolo F., Civita M., Contin A., D’Alì G., Dardo M., Del Papa C., De SabbataV.,Ferrario L., Fulgione W., Galassini S., Galeotti P., Gasperini M., Giusti P., Goldoni R., Iacobucci G., Laakso I., Leo A. R., Leo M., Luches G., Maccarrone G., Marino A., Massam T., Melnikov V. N., Meunier R., Motta F., Nania R., Nassisi V., Navarra G., Palmonari F., Papini G., Passotti G., Pelfer P., Pocci G., Prisco G., Puglisi M., Ricci M., Rinaldi G., Rizzuto C., Rohrbach F., Rotelli P., Saavedra O., Sacchetti N., Sartorelli G., Soliani G., Spadoni M., Steuer M., Susinno G., Tazzari S., Thorne K., Torelli G., Trinchero G. C., Vallania P., Venturi G., Vernetto S., Villa F., Vitale A., Votano L., Willutzky M. andZichichi A.,The INFN Eloisatron Project, inProceedings of the INFN Eloisatron Workshop (Plenum Press, New York) 1988, p. 297; andRECFA, CERN, Geneva,Switzerland, 19 June 1986.Google Scholar
  169. [171]
    Zichichi A.,The Eloisatron Project: Eurasiatic LOng Intersecting Storage Accelerator, inProceedings on New Aspects of High-Energy Proton-Proton Collisions (Plenum Press, New York, London) 1989, p. 1.Google Scholar
  170. [172]
    Zichichi A. (Editor),Physics up to 200 TeV, Erice 1990 (Plenum Press, New York, London) 1991.Google Scholar
  171. [173]
    Zichichi A.,Eloisatron: New Strategies for Supercolliders, inProceedings of the 9th Workshop of the INFN Eloisatron Project Perspectives for New Detectors in Future Supercolliders (World Scientific) 1991, p. 238.Google Scholar
  172. [174]
    Zichichi A.,Why 200 TeV, inProceedings of the 12th Workshop of the INFN Eloisatron Project (Plenum Press, New York, London) 1991, p. 1.Google Scholar
  173. [175]
    Zichichi A.,The INFN Eloisatron Project, CERN-PPE/93-62 and CERN/LAA/93-20, 13 April 1993.Google Scholar
  174. [176]
    Zichichi A.,The Eloisatron Project, inThe Superworld II, Erice 1987, edited byA. Zichichi (Plenum Press, New York, London) 1990, p. 443.Google Scholar
  175. [177]
    Alberini C., Bari G., Basile M., Berbiers J., Cara Romeo G., Casaccia R., Cifarelli L., Cindolo F., Contin A., D’Alì G., Del Papa C., De Pasquale S., Iacobucci G., Laakso I., Lee T. D., Maccarrone G., Massam T., Meunier R., Motta F., Nania R., Palmonari F., Perotto E., Prisco G., Rohrbach F., Rotelli P., Sartorelli G., Susinno G., Votano L.,Willutzky M. andZichichi A.,The Lepton Asymmetry Analyser, CERN/SPSC 86-3, SPSC/P200 Add. 1, March 1986; INFN/AE-86/4, March 1986; CERN/SPSC 86-18, SPSC/P200 Add. 2, May 1986.Google Scholar
  176. [178]
    Zichichi A. et al., The LAA Project, Report n. 1, CERN/LAA, 15 December 1986.Google Scholar
  177. [179]
    Zichichi A. et al., The LAA Project, Report n. 2, CERN/LAA, 25 June 1987.Google Scholar
  178. [180]
    Anzivino G., Bari G., Basile M., Becker U., Berbiers J., Boch R. K., Cara Romeo G., Casaccia R., Charpak G., Cifarelli L., Cindolo F., Comby G., Contin A., D’Alì G., Del Papa C., De Pasquale S., Guerard B., Heijne H., Horisberger R., Iacobucci G., Jarlskog G., Jarron P., Kelly W. M., Kirkby J., Laakso I., Lee T. D., Leutz H., Maccarrone G., Malos J., Massam T., Meunier R., Mine P., Mork G., Motta F., Nania R., Palmonari F., Perotto E., Prisco G., Rohrbach F., Rotelli P., Sartorelli G., Sauli F., Saxon D. H., Scigocki D., Schlein P., Suffert M., Susinno G., Vivargent M., Votano L., Wallraff W., Wigmans R., Willutzky M., Winter K., Wittgenstein F. andZichichi A.,The LAA Project, CERN-EP/87-122, 14 July 1987.Google Scholar
  179. [181]
    Anzivino G., Bari G., Basile M., Becker U., Berbiers J., Boch R. K., Cara Romeo G., Casaccia R., Charpak G., Cifarelli L., Cindolo F., Comby G., Contin A., D’Alì G., Del Papa C., De Pasquale S., Guerard B., Heijne H., Horisberger R., Iacobucci G., Jarlskog G., Jarron P., Kelly W. M., Kirkby J., Laakso I., Lee T. D., Leutz H., Maccarrone G., Malos J., Massam T., Meunier R., Mine P., Mork G., Motta F., Nania R., Palmonari F., Perotto E., Prisco G., Rohrbach F., Rotelli P., Sartorelli G., Sauli F., Saxon D. H., Scigocki D., Schlein P., Suffert M., Susinno G., Vivargent M., Votano L., Wallraff W., Wigmans R., Willutzky M., Winter K., Wittgenstein F. andZichichi A.,The LAA Project, ICFA — Instrumentation Bulletin, 3, September (1987).Google Scholar
  180. [182]
    Zichichi A. et al., The LAA Project, Report n. 3, CERN/LAA, 19 November 1987.Google Scholar
  181. [183]
    Zichichi A. et al.,Perspectives for a New Detector at a Future Supercollider: the LAA Project, inHeavy Flavours and High-Energy Collisions in the 1–100 TeVRange (Plenum Press, New York, London) 1989, p. 357.Google Scholar
  182. [184]
    Zichichi A. et al., The LAA Project, Report n. 4, CERN/LAA/88-1, 25 July 1988.Google Scholar
  183. [185]
    Anzivino G. et al., The LAA Project, Rivista Nuovo Cimento,13, no. 5 (1990).Google Scholar
  184. [186]
    Zichichi A.,The LAA Project: Second Year of Activity, inThe Challenging Questions,Erice 1989, edited byA. Zichichi (Plenum Press, New York, London) 1990, p. 221.Google Scholar
  185. [187]
    Acosta D. et al., Advances in Technology for High-Energy Subnuclear Physics: Contribution of the LAA Project, Rivista Nuovo Cimento,13, no. 10–11 (1990).Google Scholar
  186. [188]
    Zichichi A. et al.,The Main Achievements of the LAA Project, Report n. 7, CERN/LAA/91-1, 1 March 1991.Google Scholar
  187. [189]
    Zichichi A.,The Main Achievements of the LAA Project, inPhysics up to 200 TeV, Erice 1990, edited byA. Zichichi (Plenum Press, New York, London) 1991, p. 327.Google Scholar
  188. [190]
    Anselmo F., Block F., Brugnola G., Cifarelli L., Eskut E., Hatzifotiadou D., La Commare G., Maidantchik C., Marino M., QiAN S., Shabelski Yu. M., Xexeo G., Ye Y. andZichichi A.,The Monte Carlo Simulation Laboratory (MSL) of LAA, CERN/DRDC, 92-44, LAA Status Report, 3 September 1992.Google Scholar
  189. [191]
    Anselmo F., Cifarelli L., Eskut E. andShabelski Yu. M.,Predictions for Secondary Particle Production at Existing and Future Hadron-Hadron Colliders, Nuovo Cimento A,105 (1992) 1371.Google Scholar
  190. [192]
    Cifarelli L., Eskut E. andShabelski Yu. M.,Charm and Beauty Hadroproduction Models: QGSM vs. Lund, Nuovo Cimento A,106 (1993) 389.Google Scholar
  191. [193]
    Anselmo F., Block F., Brugnola G., Cifarelli L., Hatzifotiadou D., La Commare G. andMarino M.,Neural Networks for Higgs Search, Nuovo Cimento A,107 (1994) 129.Google Scholar
  192. [194]
    Anselmo F. et al.,Heavy Higgs Search with Hadron Supercolliders up to √s = 200 TeV,Nuovo Cimento A,107 (1994) 783.Google Scholar
  193. [195]
    Glashow S. L.,The End of Superworld III, inThe Super World III, Erice 1988, edited byA. Zichichi (Plenum, New York, London) 1990, p. 411;Glashow S. L.,Particle Physics in the Nineties, inPhysics up to 200 TeV,Erice 1990, edited by A. Zichichi (Plenum, New York, London) 1991, p. 1.Google Scholar
  194. [196]
    Gross D. J.,The Glorious Future of Particle Physics, inFrom Superstring to Present-day Physics, Erice 1994, edited by A. Zichichi (World Scientific) 1995, p. 1.Google Scholar
  195. [197]
    Lee T. D.,The Physical Vacuum as a Condensate, inEffective Theories and Fundamental Interactions, Erice 1996, edited by A Zichichi (World Scientific) 1997, p. 3.Google Scholar
  196. [198]
    Wilczek F.,Beyond the Standard Model, presented at the35th Course of the “Ettore Majorana” International School of Subnuclear Physics, Erice, Italy, 26 August-4 September 1997.Google Scholar
  197. [199]
    ’t Hooft G.,The Limits of our Imagination in Elementary Particle Theory, presented at the35th Course of the “Ettore Majorana” International School of Subnuclear Physics,Erice, Italy, 26 August-4 September 1997.Google Scholar
  198. [200]
    As early as 1938 E. C. G. Stueckelberg introduced what is now called the “Baryon number conservation”. Stueckelberg noted that the number of protons and neutrons (the heavy particles) in the Universe can never change, otherwise matter itself would be unstable. This postulate became of great relevance with the advent of the Grand Unified Theories in the Seventies.Google Scholar
  199. [201]
    Zichichi A.,Scienza ed Emergenze Planetarie — Il Paradosso dell’Era Moderna (Rizzoli) 1st edition 1993, 3rd edition 1994 (Supersaggi Bur Rizzoli) 1st edition 1996, 6th edition 1998.Google Scholar
  200. [202]
    Zichichi A.,L’Infinito (Rizzoli-Bur) 1st edition 1988, 7th edition 1994 and a more recent edition by (Pratiche Editrice) 1998.Google Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • A. Zichichi
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Università di BolognaItaly
  2. 2.INFNItaly
  3. 3.CERNGenevaSwitzerland
  4. 4.World Federation of ScientistsBeijing
  5. 5.World Federation of ScientistsGeneva
  6. 6.World Federation of ScientistsMoscow

Personalised recommendations