Advertisement

American Journal of Potato Research

, Volume 83, Issue 5, pp 409–421 | Cite as

Pink eye is an unusual periderm disorder characterized by aberrant suberization: A cytological analysis

  • Edward C. Lulai
  • John J. Weiland
  • Jeffrey C. Suttle
  • Robert P. Sabba
  • A. J. Bussan
Article

Abstract

Potato tuber pink eye (PE) is a disorder of unknown origin that results in significant postharvest quality deterioration and rot. Little is known about the physiology of PE, including the characteristic tissue autofluorescence that defines the PE syndrome. The objective of this research was to identify the source of PE-induced autofluorescence and PE-related susceptibility to infection. The suberized barrier of the native periderm and cellular characteristics of neighboring parenchyma tissues were investigated to determine their involvement in the PE disorder. The results create a new physiological model describing the disorder and addressing the enigma of PE. Characteristics of the PE model emerge from the following results: (1) the integrity of the suberized barrier of the native periderm was compromised or absent in some surface areas of PE tubers thereby implicating the breakdown of the native periderm and its associated suberin barrier with PE and the susceptibility of PE tubers to pathogen infection; (2) the PE complex was characterized by unusual suberin poly(phenolic) (SPP) accumulations in the cortical parenchyma followed by latent suberin poly(aliphatic) (SPA) accumulations that were generally insufficient to form a complete barrier that was competent to block infections by pathogenic bacteria and fungi; (3) the aberrant absence or compromised integrity of the suberin barrier, including associated waxes, resulted in erratic increased susceptibility to water vapor loss known to cause tuber shrinkage and flaccidity; (4) widespread accumulations of SPP on parenchyma cell walls were the durable source of autofluorescence commonly used to determine the presence of the disorder; (5) the erratic development of unusual internal phellogen and periderm layers that, if complete with SPA, blocked hyphal advancement; (6) combined, the data provide a plausible explanation for PE infection court and rot anomalies as they occur without ingress of a wound opening. Results also demonstrated that neutral red may be used as a sensitive fluorochrome to detect intact hydrophobic areas in hyphae. Collectively, the results provide compelling evidence that the PE disorder includes a physiological basis.

Additional key words

Potato pink eye polyphenolic polyaliphatic potato Solanum tuberosum L. 

Abbreviations

ELISA

enzyme-linked immunosorbant assay

PE

pink eye

SE

standard error

SPP

suberin poly(phenolic(s))

PDA

potato dextrose agar

FAA

formalinacetic acid-alcohol

Resumen

El ojo rosado (PE) del tubérculo de papa es un desorden de origen desconocido que deviene en un significativo deterioro de la calidad de poscosecha y pudrición. Muy poco se conoce a cerca de la fisiología de este desorden incluyendo la auto fluorescencia del tejido que caracteriza al síndrome de PE. El objetivo de esta investigación fue identificar la fuente de auto fluorescencia inducida por PE y la susceptibilidad a la infección. Se investigaron, la barrera suberizada del peridermo nativo y las características celulares del tejido del parénquima vecino, para determinar su participación en el desorden que produce el PE. Los resultados han creado un nuevo modelo fisiológico que describe el desorden y que señala el enigma de PE. Las características del modelo emergen de los siguientes resultados: (1) la integridad de la barrera suberizada del peridermo nativo estuvo comprometida o ausente en algunas áreas de la superficie de tubérculos afectados implicando una descomposición del peridermo nativo, la integridad de la barrera de suberina asociada, y la susceptibilidad de los tubérculos a la infección por patógenos, (2) el PE estuvo caracterizado por una extraordinaria acumulación de suberina polifenólica (SPF) en el parénquima, seguida por una latente acumulación de suberina polialifática (SPA) que fueron generalmente insuficientes para formar una barrera completa capaz de bloquear infecciones de bacterias y hongos patógenos, (3) la ausencia aberrante o compromiso de la integridad de la barrera de suberina, incluyendo ceras, dio como resultado un aumento errático de la susceptibilidad a la pérdida de vapor de agua, causas conocidas de la reducción y flacidez del tubérculo, (4) la acumulación generalizada de SPF en las paredes de las células del parénquima fue el origen constante de la autofluorescencia, utilizada comúnmente para determinar la presencia del desorden, (5) el desarrollo errático de capas de felógeno interno inusual y capas de peridermo, las cuales cuando se complementan con SPA, bloquean el avance de hifas, (6) combinados los datos, proporcionan una explicación plausible para el ingreso de PE y anomalías de la raíz, como ocurre sin la abertura de una herida de ingreso. Los resultados también han demostrado que se puede utilizar el rojo neutro como un fluorocromo sensible para detectar las áreas hidrofóbicas en hifas. En conjunto, los resultados proporcionan una evidencia precisa de que el PE incluye una base fisiológica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Banville GJ, DE Carling and BE Otrysko. 1996. Rhizoctonia disease on potato.In: B Sneh, S Jabaji-Hare, S Neate and G Dijst (eds),Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp 321–330.Google Scholar
  2. Bernards MA. 2002. Demystifying suberin. Can J Bot 80:227–240.CrossRefGoogle Scholar
  3. Biemelt S, MR Hajirezaei, M Melzer, G Albrecht and U Sonnewald. 1999. Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta 210:41–49.PubMedCrossRefGoogle Scholar
  4. Colmer TD. 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell Environ 26:17–36.CrossRefGoogle Scholar
  5. Gahan PB. 1984. Vital dyes.In: PB Gahan (ed), Plant Histochemistry and Cytochemistry: An Introduction. Academic Press, London. pp 124–130.Google Scholar
  6. Goth RW, KG Haynes and DR Wilson. 1993. Relationship ofVerticillium wilt with pink-eye of potato in Maine. Plant Dis 77:402–405.Google Scholar
  7. Goth RW, KG Haynes and DR Wilson. 1994. Independent segregation in potato for resistance toVerticillium wilt in pink-eye. Plant Dis 78:562–564.Google Scholar
  8. Graca J and H Pereira. 2000. Suberin in potato periderm: glycerol, longchain monomers, and glyceryl and feruloyl dimers. J Agric Food Chem 48:5476–5483.PubMedCrossRefGoogle Scholar
  9. Keijer J. 1996. The initial steps of the infection process inRhizoctonia solani.In: B Sneh, S Jabaji-Hare, S Neate and G Dijst (eds),Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp 149–162.Google Scholar
  10. Lulai EC. 2001. Tuber periderm and disease resistance.In: WR Stevenson, R Loria, GD Franc and DP Weingartner (eds), Compendium of Potato Diseases. APS Press, St. Paul, MN. pp 3–6.Google Scholar
  11. Lulai EC. 2005. Non-wound-induced suberization of tuber parenchyma cells: a physiological response to the wilt disease pathogenVerticillium dahliae. Amer J Potato Res 82:433–440.CrossRefGoogle Scholar
  12. Lulai EC and DL Corsini. 1998. Differential depositions of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) woundhealing. Physiol Mol Plant Pathol 53:209–222.CrossRefGoogle Scholar
  13. Lulai EC and TC Freeman. 2001. The importance of phellogen cells and their structural characteristics in susceptibility and resistance to excoriation of potato tuber (Solanum tuberosum L.) upon periderm maturation. Ann Bot 88:555–561.CrossRefGoogle Scholar
  14. Lulai EC and WC Morgan. 1992. Histochemical probing of potato periderm with neutral red: a sensitive cytofluorochrome for the hydrophobic domain of suberin. Biotech Histochem 67:185–195.PubMedCrossRefGoogle Scholar
  15. Lulai EC and PH Orr. 1994. Techniques for detecting and measuring developmental and maturational changes in tuber native periderm. Am Potato J 71:489–505.CrossRefGoogle Scholar
  16. Lulai EC and PH Orr. 1995. Porometric measurements indicate wound severity and tuber maturity affect the early stages of woundhealing. Am Potato J 72:225–241.CrossRefGoogle Scholar
  17. Nolte P, GA Secor, NC Gudmestad and PJ Henningson. 1993. Detection and identification of fluorescent compounds in potato tuber tissue with corky patch syndrome. Am Potato J 70:649–666.CrossRefGoogle Scholar
  18. Schreiber L, R Franke and K Harmann. 2005. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220:520–530.PubMedCrossRefGoogle Scholar
  19. Secor GA and NC Gudmestad. 2001. Disease of unknown cause: pink eye.In: WR Stevenson, R Loria, GD Franc and DP Weingartner (eds), Compendium of Potato Disease. APS Press, St. Paul, MN. pp 15–16.Google Scholar
  20. Sneh B, L Burpee and A Ogoshi. 1994. Identification ofRhizoctonia Species. APS Press, St. Paul, MN. pp 1–89.Google Scholar
  21. Soliday CL, PE Kolattukudy and RW Davis. 1979. Chemical evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor. Planta 146:606–614.CrossRefGoogle Scholar
  22. Weber RWS. 2002. Vacuoles and the fungal lifestyle. Mycologist 16:10–20.CrossRefGoogle Scholar
  23. Wigginton M. 1974. Effects of temperature, oxygen tensions and relative humidity on the wound-healing process in the potato tuber. Potato Res 17:200–214.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Edward C. Lulai
    • 1
  • John J. Weiland
    • 1
  • Jeffrey C. Suttle
    • 1
  • Robert P. Sabba
    • 2
  • A. J. Bussan
    • 2
  1. 1.USDA-ARS, Northern Crop Science LaboratoryFargoUSA
  2. 2.Dept. of HorticultureUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations