Advertisement

American Journal of Potato Research

, Volume 81, Issue 4, pp 275–280 | Cite as

Comparing potato tuberization and sprouting: Opposite phenomena?

  • Dick Vreugdenhil
Article

Abstract

The regulation of tuber formation and tuber sprouting are compared. As a starting point it is hypothesized that these two phenomena are opposite to each other. This idea is tested from three points of view: hormonal regulation, gene expression, and carbohydrate metabolism. It is concluded that there is only limited evidence to support the hypothesis. On the contrary, several examples are given indicating that similar mechanisms might be operative during tuber formation and tuber sprouting.

Additional Key Words

carbohydrate metabolism gene expression hormones Solanum tuberosum 

Resumen

Se comparait los métodos de formación y brotamiento del tubérculo. Se parte de la hipótesis que estos fenómenos son opuestos entre sí. Esta idea ha sido probada desde tres puntos de vista: regulación hormonal, expresión de los genes y metabolismo de carbohidratos. Se concluye que sólo existe evidencia limitada para defender estas hipótesis. Por el contrario se dan varios ejemplos que indican que mecanismos similares podrian ser operativos durante la formación y brotamiento del tubérculo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Appeldoom NJG, SM deBruijn, EAM Koot-Gronsveld, RGF Visser, D Vreugdenhil and LHW vanderPlas. 1997. Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta 202:220–226.CrossRefGoogle Scholar
  2. Appeldoorn NJG, SM De Bruijn, EAM Koot-Gronsveld, RGF Visser, D Vreugdenhil, and LHW vanderPlas. 1999. Developmental changes in enzymes involved in the conversion of hexose phosphate and its subsequent metabolites during early tuberization of potato. Plant Cell Environ 22:1085–1096.CrossRefGoogle Scholar
  3. Bachem CWB, RS vanderHoeven, SM deBruün, D Vreugdenhil, M Zabeau, and RGF Visser. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J 9:745–753.PubMedCrossRefGoogle Scholar
  4. Bachem C, R vanderHoeven, J Lucker, R Oomen, E Casarini, E Jacobsen, and R Visser. 2000. Functional genomic analysis of potato tuber life-cycle. Potato Res 43:297–312.CrossRefGoogle Scholar
  5. Bailey KM, IDJ Phillips, and D Pitt. 1978. The role of buds and gibberellin in dormancy and the mobilization of reserve materials in potato tubers. Ann Bot 42:649–657.Google Scholar
  6. Biemelt S, M Hajirezaei, E Hentschel, and U Sonnewald. 2000. Comparative analysis of abscisic acid content and starch degradation during storage of tubers harvested from different potato varieties. Potato Res 43:371–382.CrossRefGoogle Scholar
  7. Carrera E, J Bou, JL Garcia-Martinez, and S Prat. 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256.PubMedCrossRefGoogle Scholar
  8. Claassens MMJ, and D Vreugdenhil. 2000. Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Res 43:347–369.CrossRefGoogle Scholar
  9. Claassens MMJ. 2002. Carbohydrate metabolism during potato tuber dormancy and sprouting. Wageningen University, Wageningen, The Netherlands.Google Scholar
  10. Davies HV, and R Viola. 1988. The effect of gibberellic-acid on starch breakdown in sprouting tubers ofSolanum tuberosum L. Ann Bot 61:689–693.Google Scholar
  11. Geigenberger P. 2003. Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 54:457–465.PubMedCrossRefGoogle Scholar
  12. Guivarc’h A, J Rembur, M Goetz, T Roitsch, M Noin, T Schmulling, and D Chriqui. 2002. Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. J Exp Bot 53:621–629.PubMedCrossRefGoogle Scholar
  13. Hendriks T, D Vreugdenhil, and WJ Stiekema. 1991. Patatin and 4 serine proteinase-inhibitor genes are differentially expressed during potato-tuber development. Plant Mol Biol 17:385–394.PubMedCrossRefGoogle Scholar
  14. Jackson SD. 1999. Multiple signaling pathways control tuber induction in potato. Plant Physiol 119:1–8.PubMedCrossRefGoogle Scholar
  15. Kolomiets MV, DJ Hannapel, H Chen, M Tymeson, and RJ Gladon. 2001. Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626.PubMedCrossRefGoogle Scholar
  16. Riou-Khamlichi C, R Huntley, A Jacqmard, and JAH Murray. 1999. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544.PubMedCrossRefGoogle Scholar
  17. Rojas-Beltran JA, F Dejaeghere, MA Kotb, and P Du Jardin. 2000. Expression and activity of antioxidant enzymes during potato tuber dormancy. Potato Res 43:383–393.CrossRefGoogle Scholar
  18. Ronning CM, SS Stegalkina, RA Ascenzi, O Bougri, AL Hart, TR Utterbach, SE Vanaken, SB Riedmuller, JA White, J Cho, GM Pertea, Y Lee, S Karamycheva, R Sultana, J Tsai, J Quackenbush, HM Griffiths, S Restrepo, CD Smart, WE Fry, R van der Hoeven, S Tanksley, PF Zhang, HL Jin, ML Yamamoto, BJ Baker, and CR Buell. 2003. Comparative analyses of potato expressed sequence tag libraries. Plant Physiol 131:419–429.PubMedCrossRefGoogle Scholar
  19. Suttle JC, and GM Banowetz. 2000. Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol Plant 109:68–74.CrossRefGoogle Scholar
  20. Suttle J. 2000. The role of endogenous hormones in potato tuber dormancy.In: JD Viémont and J Crabbé (eds), Dormancy in Plants. CAB International. pp 211–226.Google Scholar
  21. Suttle J. 2001. Dormancy-related changes in cytokinin efficacy and metabolism in potato tubers during postharvest storage. Plant Growth Regul 35:199–206.CrossRefGoogle Scholar
  22. Taylor MA, SAM Arif, A Kumar, HV Davies, LA Scobie, SR Pearce, and AJ Flavell. 1992. Expression and sequence-analysis of cDNAs induced during the early stages of tuberization in different organs of the potato plant (Solanum tuberosum L). Plant Mol Biol 20:641–651.PubMedCrossRefGoogle Scholar
  23. Verhees J. 2002. Cell cycle and storage related gene expression in potato tubers. Wageningen University, Wageningen, The Netherlands.Google Scholar
  24. Verhees J, AR van der Krol, D Vreugdenhil, and LHW van der Plas. 2002. Characterization of gene expression during potato tuber development in individuals and populations using the luciferase reporter system. Plant Mol Biol 50:653–665.PubMedCrossRefGoogle Scholar
  25. Visser RGF, D Vreugdenhil, T Hendriks, and E Jacobsen. 1994. Geneexpression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum). Physiol Plant 90:285–292.CrossRefGoogle Scholar
  26. Vreugdenhil D, and LI Sergeeva. 1999. Gibberellins and tuberization in potato. Potato Res 42:471–481.CrossRefGoogle Scholar
  27. Xu X, AAM van Lammeren, E Vermeer, and D Vreugdenhil. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117:575–584.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Laboratory of Plant Physiology, Graduate School Experimental Plant SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations