Environmental conditions influence the content and yield of anthocyanins and total phenolics in purple- and red-flesh potatoes during tuber development

  • L. F. Reyes
  • J. C. Miller
  • L. Cisneros-Zevallos


Changes in content and yield of anthocyanins (ACY) and total phenolics (PHEN) during development of purple- and red-flesh potato (Solanum tuberosum L.) were studied in cultivars grown in Texas and Colorado. In both locations, the ACY and PHEN content (mg/100 g tissue) decreased with tuber growth and maturity, while tuber weight (kg), total yield (Ton ha-1) and compound yields (kg ha-1) increased. Longer days and cooler temperatures in Colorado favored about a 2.5- and 1.4-times higher ACY and PHEN content, respectively, than in Texas-grown tubers. Harvesting potatoes at later maturity stages maximized compound yields while minimizing the glycoalkaloid content. This information can be useful to potato breeders and producers in selecting appropriate growing conditions for the enhancement of natural colorant and antioxidant yields in purple- and red-flesh potatoes for the nutraceutical and food industry.

Additional Key Words

accumulation antioxidants Solanumtuberosum L. 


Se estudiaron los cambios en el contenido y rendimiento de antocianinas (ACY) y fenolicos totales (PHEN) en cultivares de papa (Solanum tuberosum L.) de pulpa morada y roja, durante su desarrollo en Texas y Colorado. En ambas localidades, el contenido de ACY y PHEN (mg/100 g de tejido) disminuyó a medida que el tubérculo desarrolló y maduró, mientras que el peso de tubérculos (kg), el rendimiento total (Ton ha-1) y el rendimiento de compuestos fenolicos (kg ha-1) aumentaron. Los días más largos y temperaturas frías en Colorado favorecieron el contenido de ACY y PHEN en los tubérculos cosechados en 2.5 y 1.4 veces respectivamente, que aquellos obtenidos en Texas. La cosecha de tubérculos en periodos tardíos de madurez maximizó los rendimientos de compuestos fenolicos, mientras que el contenido de glicoalcaloides se minimizó. Esta información puede ser útil para mejoradores y productores de papa, con el fin de seleccionar las condiciones apropiadas de cultivo que aumenten el rendimiento de colorantes y antioxidantes, en papas de pulpa morada y roja, para su utilización en las industrias nutracéuticas y de alimentes.

Literature Cited

  1. Abdel-Aal ESM, and P Hucl. 1999. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76: 350–354.CrossRefGoogle Scholar
  2. Al-Saikhan MS, LR Howard, and JC Miller Jr. 1995. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum, L). J Food Sci 60: 341–343,347.CrossRefGoogle Scholar
  3. Bridle P, and CF Timberlake. 1997. Anthocyanins as natural food colours-Selected aspects. Food Chem 58: 103–109.CrossRefGoogle Scholar
  4. Brown CR, R Wrolstad, R Durst, CP Yang, and B Clevidence. 2003. Breeding studies in potatoes containing high concentrations of anthocyanins. Amer J Potato Res 80: 241–250.Google Scholar
  5. Camm EL, J McCallum, E Leaf, and MR Koupai-Abyazani. 1993. Coldinduced purpling ofPinus contorta seedlings depends on previous daylength treatment. Plant, Cell Environ 16: 761–764.CrossRefGoogle Scholar
  6. Chalker-Scott L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70(1): 1–9.CrossRefGoogle Scholar
  7. Cisneros-Zevallos L. 2003. The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J Food Sci 68: 1560–1565.CrossRefGoogle Scholar
  8. Dixon RA, and NL Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.PubMedCrossRefGoogle Scholar
  9. Friedman M, and GM McDonald. 1997. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16: 55–132.CrossRefGoogle Scholar
  10. Fuleki T, and FJ Francis. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33: 72–77.CrossRefGoogle Scholar
  11. Giusti MM, LE Rodriguez-Saona, JR Baggett, GL Reed, RW Durst, and RE Wrolstad. 1998. Anthocyanin pigment composition of red radish cultivars as potential food colorants. J Food Sci 63: 219–224.Google Scholar
  12. Hung CY, JR Murray, SM Ohmann, and CBS Tong. 1997. Anthocyanin accumulation during potato tuber development. J Am Soc Hort Sci 122: 20–23.Google Scholar
  13. Jackman RL, and JL Smith. 1992. Anthocyanins and betalains.In: GAF Hendry, JD Houghton (eds), Natural Food Colorants, Blackie and Son Ltd, London. pp. 183–241.Google Scholar
  14. Lachman J, K Hamouz, M Orsák, and V Pivec. 2001. Potato glycoalkaloids and their significance in plant protection and human nutrition-review. Rostlinná Vyroba 47: 181–191.Google Scholar
  15. Lewis CE, JRL Walker, and JE Lancaster. 1999. Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L) tubers. J Sci Food Agric 79: 311–316.CrossRefGoogle Scholar
  16. Lewis CE, JRL Walker, JE Lancaster, and AJ Conner. 1998a. Light regulation of anthocyanin, flavonoid and phenolic acid biosynthesis in potato minitubersin vitro. Aust J Plant Physiol 25: 915–922.CrossRefGoogle Scholar
  17. Lewis CE, JRL Walker, JE Lancaster, and KH Sutton. 1998b. Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars ofSolanum tuberosum L. J Sci Food Agric 77: 45–57.CrossRefGoogle Scholar
  18. Mol J, G Jenkins, E Schäefer, and D Weiss. 1996. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci 15: 525–557.CrossRefGoogle Scholar
  19. Opheim S, and OM Andersen. 1992. Anthocyanins in the genusSolanum. Phytochem (Life Sci Adv) 11: 239–243.Google Scholar
  20. Papathanasiou F, SH Mitchell, and BMR Harvey. 1998. Glycoalkaloid accumulation during tuber development of early potato cultivars. Potato Res 41: 117–125.CrossRefGoogle Scholar
  21. Reyes LF, and L Cisneros-Zevallos. 2003. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L). J Agric Food Chem 51: 5296–5300.PubMedCrossRefGoogle Scholar
  22. Rodríguez-Saona LE, MM Giusti, and RE Wrolstad. 1998. Anthocyanin pigment composition of red-fleshed potatoes. J Food Sci 63: 458–465.CrossRefGoogle Scholar
  23. Rodríguez-Saona LE, MM Giusti, and RE Wrolstad. 1999a. Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model systems. J Food Sci 64: 451–456.CrossRefGoogle Scholar
  24. Rodríguez-Saona LE, RE Wrolstad, and C Pereira 1999b. Glycoalkaloid content and anthocyanin stability to alkaline treatment of redfleshed potato extracts. J Food Sci 64: 445–450.CrossRefGoogle Scholar
  25. Simon PW. 1997. Plant pigments for color and nutrition. HortScience 32: 12–13.Google Scholar
  26. Sotelo A, and B Serrano. 2000. High-performance liquid Chromatographie determination of the glycoalkaloids α-solanine and α-chaconine in 12 commercial varieties of Mexican potato. J Agric Food Chem 48: 2472–2475.PubMedCrossRefGoogle Scholar
  27. Swain T, and WE Hillis. 1959. The phenolic constituents ofPrunus domestica. I. The quantitative analysis of phenolic constituents. J Sci Food Agric 10: 63–68.CrossRefGoogle Scholar
  28. Vayda ME. 1994. Environmental stress and its impact on potato yield.In: JE Bradshaw, GR Mackay (eds), Potato Genetics, CAB International, Wallingford, UK. pp. 239–261.Google Scholar
  29. Velioglu YS, G Mazza, L Gao, and BD Oomah. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46: 4113–4117.CrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • L. F. Reyes
    • 1
  • J. C. Miller
    • 1
  • L. Cisneros-Zevallos
    • 1
  1. 1.Department of Horticultural SciencesTexas A & M UniversityCollege Station

Personalised recommendations