Sequence spaces and inverse of an infinite matrix

  • Bruno De Malafosse
  • Eberhard Malkowsky


We give here some properties of the sets α(uΔ) generalizing the space of generalized difference sequencesl (uΔ). Then we study spaces related to the sets of sequences that are strongly convergent or strongly bounded. Next we define from the sets of spaces that are (N,q) summable or bounded the sets of spaces that are (N,q)α-bounded orr-bounded. Then we give some properties of these spaces using Banach space of the forms α.


Banach Space Matrix Theory Sequence Space Banach Algebra Difference Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cooke R. G.,Infinite matrices and sequences spaces, Macmillan and Co., London, (1949).Google Scholar
  2. [2]
    Labbas R., de Malafosse B.,On some Banach algebra of infinite matrices and applications, Demonstratio Matematica,31 (1998), 153–168.MATHGoogle Scholar
  3. [3]
    Labbas R., de Malafosse B.,An application of the sum of linear operators in infinite matrix theory, Faculté des Sciences de l’Université d’Ankara, Series Al Mathematics and statistics,46 (1997), 191–210.MATHGoogle Scholar
  4. [4]
    Maddox I. J.,Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, (1980).MATHGoogle Scholar
  5. [5]
    de Malafosse B.,Systèmes linéaires infinis admettant une infinité de solutions, Atti dell’Accademia Peloritana dei Pericolanti di Messina, Classe I di Scienze Fis. Mat. e Nat.,64 (1986).Google Scholar
  6. [6]
    de Malafosse B.,On the spectrum of the Cesàro operator in the space s r, Faculté des Sciences de l’Université d’Ankara, Series Al Mathematics and statistics,48 (1999), 53–71.MATHGoogle Scholar
  7. [7]
    Malkowsky E.,BK spaces, bases and linear operators, Rend. del circ. Mat. di Palermo,52 (1998), 177–191.MathSciNetGoogle Scholar
  8. [8]
    Malkowsky E.,The continuous duals of the spaces c 0(Λ)and c(Λ)for exponentially bounded sequences Λ, Acta Sci. Math. Szeged,61 (1995), 241–250.MATHMathSciNetGoogle Scholar
  9. [9]
    Malkowsky E.,Linear operators in certain B K spaces, Bolyai Mathematical Studies, S, Approximation Theory and Function Series Budapest (Hungary), (1995), Budapest (1996).Google Scholar
  10. [10]
    Malkowsky E., Parashar S. D.,Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis,17 (1997), 87–97.MATHMathSciNetGoogle Scholar
  11. [11]
    Moricz F.,On Λ-strong convergence of numerical sequences and Fourier series, Acta Math. Hung.,54 (1989), 319–327.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Okutoyi J. T.,On the spectrum of C 1 as operator on bv, Commun. Fac. Sci. Univ. Ank. SeriesA 1,41 (1992), 197–207.MATHMathSciNetGoogle Scholar
  13. [13]
    Reade J. B.,On the spectrum of the Cesàro operator, Bull. London Math. Soc.,17 (1985), 263–267.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Wilansky A.,Summability through Functional Analysis, North-Holland Mathematics Studies,85 (1984).Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Bruno De Malafosse
    • 1
  • Eberhard Malkowsky
    • 2
  1. 1.B.D.M.: I.U.T Université du HavreLe HavreFrance
  2. 2.E.M.: Mathematisches InstitutUniversität GiessenGiessenGermany

Personalised recommendations