Rendiconti del Circolo Matematico di Palermo

, Volume 51, Issue 1, pp 83–94 | Cite as

Locally von Neumann algebras II

  • Maria Joiţa


In this paper, we will prove some properties of locally von Neumann algebras. In particular, we will show that every locally von Neumann algebra is the dual of a certain locally convex space and also, we will show the existence of a polar decomposition for every element in a locally von Neumann algebra.


Polar Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fragoulopoulou M.,On locally W*-algebras, Yokohama Math. J.,34 (1986), 35–51.MATHMathSciNetGoogle Scholar
  2. [2]
    Inoue A.,Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ.,25 (1971), 197–235.MATHGoogle Scholar
  3. [3]
    Joita M.,Locally von Neumann algebras, I. Bull. Math. Soc. Sci. Math. Roumanie,42 (90) (1999), 51–64.MATHMathSciNetGoogle Scholar
  4. [4]
    Pedersen G. K.,C*-algebras and their automorphism groups, Academic Press London New York San Francisco, (1979).MATHGoogle Scholar
  5. [5]
    Phillips N. C.,Inverse limits of C*-algebras, J. Operator Theory,19 (1988), 159–195.MATHMathSciNetGoogle Scholar
  6. [6]
    Takesaki M.,Theory of operator algebras, I. Springer New York Heidelberg Berlin, (1979).MATHGoogle Scholar
  7. [7]
    Sakai S.,C*-algebras and W*-algebras, Springer Berlin Heidelberg New York, (1971).Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Maria Joiţa
    • 1
  1. 1.Department of Mathematics Faculty of ChemistryUniversity of BucharestRomania

Personalised recommendations