American Potato Journal

, Volume 61, Issue 1, pp 41–56 | Cite as

Winter and summer performance of potato (Solanum tuberosum) in isohyperthermic regimes

  • L. A. Manrique
  • G. Y. Tsuji
  • G. Uehara
  • R. L. Fox


Potato production in isohyperthermic temperature regimes (mean annual soil temperature higher than 22°C) has been considered impractical physiologically and economically. However, recent experiments with potatoes (var. Kennebec) on a clayey, kaolinitic, isohyperthermic Tropeptic Eutrustox of Hawaii during the winters of 1980 and 1981 and the summer of 1980, indicate that although seasonal variation in the tropics is minimal when compared to temperate regions, there is enough of a distinction in temperature that potato production is possible and favored during the cooler winter months. Soil temperatures, measured at 20-cm depth, in irrigated plots range from 18 to 20°C in winter and 24 to 26°C in summer. Tuber initiation in winter and summer began at 40 and 55 days after planting, respectively. Maturity was delayed by 20 days in summer. Yields in irrigated plots were 36,000 in winter and 25,000 kg/ha in summer; in nonirrigated plots, yields were 14,600 in winter and 7,900 kg/ha in summer. Nutrient uptake and water and energy use were less efficient in summer. The results indicated that winter is the most suitable season for potato production in the warm tropics.

Key Words

Soil family Tropeptic Eutrustox agrotechnology transfer potato production 


La producción de papas bajo temperaturas isohipertérmicas (temperaturas medias anuales sobre 22°C), ha sido considerada impráctica desde el punto de vista fisiológico y económico. Sin embargo, experimentes recientes con papas (var. Kennebec) arcilloso, caolinitico, isohipertérmico, de Hawaii, durante el invierno de 1980 y 1981 y verano de 1981, indican que la variación de temperaturas existente hace posible la producción de papa. Esta producción de papa es parecida aún más pos los meses frescos de invierno. Las temperaturas medidas a 20 cm. de profundidad en parcelas irrigadas variaron dentro de un rango de 18–20°C en el invierno y 24 a 26°C en el verano. La iniciación de tubérculos, tanto en invierno como en verano, empezó a los 40 y 55 días después de la siembra, respectivamente. La madurez se retardó 20 días durante el verano. Los rendimientos en parcelas irrigadas fueron de 36,000 kg/ha en invierno y 25,000 kg/ha en verano; los rendimientos en parcelas no irrigadas fueron 14,600 kg/ha en invierno y 7,900 kg/ha en verano. La asimilación de nutrientes y agua y energía usada, fue menos eficiente en verano. Los resultados indicaron que el invierno es la estación más adecuada para la producción de papas en los trópicos cálidos.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ashgar, M. and Y. Kanehiro. 1981. Fate of applied Fe and Mn in an Oxisol and an Ultisol from Hawaii. Soil Sci 131:53–55.CrossRefGoogle Scholar
  2. 2.
    Boawn, L.C. and G.E. Leggett. 1963. Zinc deficiency of the Russet Burbank potato. Soil Sci 95:137–141.CrossRefGoogle Scholar
  3. 3.
    Boawn, L.C. and G.E. Leggett. 1964. Phosphorus and Zn concentrations in Russet Burbank potato tissue in relation to development of Zn deficiency symptoms. Soil Sci Soc Am Proc 28:229–232.Google Scholar
  4. 4.
    Eaton, F.M. 1973. Sulphur. In H.D. Chapman (ed.), Diagnostic criteria for plants and soils. Published by the editor, Riverside, California. 786 p.Google Scholar
  5. 5.
    Ezeta, F.M. and R.E. McCollum. 1972. Dry matter production, and nutrient uptake and removal bySolanum andigena in the Peruvian Andes. Am Potato J 49:151–163.CrossRefGoogle Scholar
  6. 6.
    Fujimoto, C.K. and G.D. Sherman. 1948. Behavior of manganese in the soil and the manganese cycle. Soil Sci 66:131–145.CrossRefGoogle Scholar
  7. 7.
    Gorsline, G.W., D.E. Boker and W.I. Thomas. 1965. Accumulation of eleven elements by field corn (Zea mays L.). Penn State Univ Exp Stn Bull 725. 30 p.Google Scholar
  8. 8.
    Gregory, L.D. 1954. Some factors controlling tuber formation in the potato plant. Ph.D. thesis. University of California, Los Angeles, California.Google Scholar
  9. 9.
    Hargreaves, G.H. 1974. Estimation of potential and crop evapotranspiration. Trans ASAE 17:701–704.Google Scholar
  10. 10.
    Jones, J.B., Jr. 1970. Distribution of 15 elements in corn leaves. Common Soil Sci Plant Anal 1:27–34.CrossRefGoogle Scholar
  11. 11.
    Jones, J.B., Jr. 1972. Plant tissue analysis for micronutrients.In J.J. Morvedt et al. (eds.), Micronutrients in agriculture. Soil Sci Soc Am Inc, Madison, Wisconsin.Google Scholar
  12. 12.
    Laughlin, W.M. 1971. Production and chemical composition of potatoes related to placement and rate of nitrogen. Am Potato J 48:1–15.CrossRefGoogle Scholar
  13. 13.
    Lee, C.R. 1971. Influences of aluminum on plant growth and mineral nutrition of potatoes. Agron J 63:604–608.Google Scholar
  14. 14.
    Loneragan, J.F. 1976. Plant efficiencies in the use of Co, Cu, Mn, and Zn.In M. Wright and S.A. Ferrari (eds.), Plant adaption to mineral stress in problem soils. New York Agric Expt Stn, Cornell Univ., Ithaca, New York.Google Scholar
  15. 15.
    MacKay, D.C., C.R. MacEachern and R.F. Bishop. 1966. Optimum nutrient levels in potato leaves (Solanum tuberosum L.). Soil Sci Soc Am Proc 30:73–76.Google Scholar
  16. 16.
    McCollum, R.E. 1978. Analysis of potato growth under P regimes. I. Tuber yields and allocation of dry matter and P. Agron J 70:51–57.Google Scholar
  17. 17.
    Moorby, J. 1978. The physiology of growth and tuber yields.In P.M. Harris (ed.), The potato crop. Chapman and Hall, London, pp. 153–194.Google Scholar
  18. 18.
    Roy, A.C., M.Y. Ali, R.L. Fox and J.A. Silva. 1971. Influences of calcium silicate on phosphate solubility and availability in Hawaiian Latosols. Proc Int Symp Soil Fert Eval (New Delhi, India, 1971), 1:757–765.Google Scholar
  19. 19.
    Sanders, D.C., R.E. Nylund and E.C. Quisumbing. 1972. The influence of mist irrigation on the potato. III. Nutrient content of leaves. Am Potato J 49:218–225.CrossRefGoogle Scholar
  20. 20.
    Sherman, G.D. and C.K. Fujimoto. 1946. The effect of the use of lime, soil fumigants, and mulch on the solubility of Mn in Hawaiian soils. Soil Sci Soc Am Proc 11:206–210.Google Scholar
  21. 21.
    Slater, J.W. 1963. Mechanisms of tuber initiation.In J.D. Ivins and F.L. Milthorpe (eds.), The growth of the potato. Proc 10th Easter School Agric Sci, University of Nottingham, England.Google Scholar
  22. 22.
    Soltanpour, P.N. 1969. Effect of nitrogen, phosphorus and zinc placement on yield and composition of potatoes. Agron J 61:288–293.Google Scholar
  23. 23.
    Vander Zaag, P. 1979. The phosphorus requirements of root crops. Ph.D. dissertation. Dept of Agron and Soil Sciences, University of Hawaii, Honolulu.Google Scholar
  24. 24.
    Wilcox, G.E. and J. Hoff. 1970. Nitrogen fertilization of potatoes for early summer harvest. Am Potato J 47:99–102.CrossRefGoogle Scholar

Copyright information

© Springer 1984

Authors and Affiliations

  • L. A. Manrique
    • 1
  • G. Y. Tsuji
    • 1
  • G. Uehara
    • 1
  • R. L. Fox
    • 1
  1. 1.Department of Agronomy and Soil ScienceUniversity of HawaiiHonolulu

Personalised recommendations