Advertisement

Folia Microbiologica

, Volume 10, Issue 5, pp 302–323 | Cite as

Continuous cultivation of microorganisms

A review
  • I. Málek
  • J. Řičica
Review

Keywords

Dilution Rate Continuous Culture Itaconic Acid Continuous Fermentation Residence Time Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alian, A., Rabotnova, I. L.:Continuous submerged cultivation of Acetobacter aceti in the synthetic medium. (In Russian). Mikrobiologiya 33: 705, 1964. (Алиан, А., Работнова, И. Л.: Микробиология 33: 705, 1964).Google Scholar
  2. 2.
    Austin, J. H.:Strontium sorption by Chlorella pyrenoidosa in continuous culture. Diss. Abstr. 24, abstr. No. 64-5191, 1964.Google Scholar
  3. 3.
    Austin, J. H., Klett, C. A., Kaufman, W. J.:Use of continuous cultures for estimating strontium sorption by Chlorella pyrenoidosa. Presented at the Ann. Meeting of the American Society of Limnology and Oceanography at Miami Beach, Florida, April 15, 1964.Google Scholar
  4. 4.
    Ban, S., Rosa, M.:Continuous fermentation of ethanol from molasess and the possibility of its industrial application. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use— Zagreb 30th September—3rd October 1964, Abstr. of papers, p. 5, 1964.Google Scholar
  5. 5.
    Bassham, J. A., Kirk, M.:Photosynthesis of amino acids. Report UCRL-11161, Univ. of California, pp. 23, December, 1963.Google Scholar
  6. 6.
    Bassham, J. A., Kirk, M.:Photosynthesis of amino acids. Biochim. Biophys. Acta 90: 553, 1964.PubMedGoogle Scholar
  7. 7.
    Bassham, J. A., Morawiecka, B., Kirk, M.:Proteinsynthesis during photosynthesis. Biochim. biophys. Acta 90: 542, 1964.PubMedGoogle Scholar
  8. 8.
    Behrens, U.:Technical microbiological aspects in the treatment of organic wastes. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October 1964, Abstr. of papers, p. 6, 1964.Google Scholar
  9. 9.
    Benoit, R. J.:Mass culture of microalgae for photosynthetic gas exchange. In: Algae and man, Plenum Press, p. 413, 1964.Google Scholar
  10. 10.
    Bergander, E.:Rohstoff- und Verfahrensprobleme der Back- und Futterhefeindustrie. Die Lebensmittel-Industrie 10: 326, 1963.Google Scholar
  11. 11.
    Bergander, E.:Rohstoff- und Verfahrensprobleme der Back- und Futterhefeindustrie. Die Lebensmittel-Industrie 10: 363, 1963.Google Scholar
  12. 12.
    Bojko, I. D.:Continuous cultivation of microorganisms producing antibiotics. (In Russian). Antibiotiki 5: 565, 1964. (Бойко, И. Д.: Антибиотики 5: 565, 1964).Google Scholar
  13. 13.
    Breslau, A. M., Kubota, M. Y.:Continuous in vitro cultivation of spherules of Coccidioides immitis. J. Bacteriol. 87: 468, 1964.PubMedGoogle Scholar
  14. 14.
    Callow, D. S.:Antibiotic production by Cephalosporium in continuous-flow culture. 2nd International Ferment Symposium, London, April 13–17, Abstr. of papers, p. 13, 1964.Google Scholar
  15. 15.
    Childs, C. G., Welsby, B.:Laboratory studies of continuous lactic acid fermentation. 2nd International Ferment. Symposium, London April 13–17, Abstr. of papers, p. 13, 1964.Google Scholar
  16. 16.
    Chrostowski J.et al.:Ciągły proces fermentacji burzliwej w browarze. Przemysł Spożywczy 18: 34, 1964.Google Scholar
  17. 17.
    Continuous cultivation of microorganisms. Proceedings of the 2nd symposium held in Prague, June 18–23, 1962. Publ. House Czechoslov. Acad. Sci., Prague, 1964.Google Scholar
  18. 18.
    Contois, D., E., Seymour, W. F. K.:DNA turnover: Evidence from studies of steady-state bacterial populations. Biochim. Biophys. Res. Commun. 16: 124, 1964.CrossRefGoogle Scholar
  19. 19.
    Dowell, V. R., Jr., Hill, E. O.:Effect of environment on the morphology of Sphaerophorus necrophorus grown in continuous culture. Bacteriol. Proceedings, Abstr. of the 64th Annual Meeting, Washington, D. C., May 3–7, 1964.Google Scholar
  20. 20.
    Dražić, T., Johanides, V.:Production of acetic acid by continuous cultivation of acetic acid bacteria. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October, 1964, Abstr. of papers, p. 4, 1964.Google Scholar
  21. 21.
    Enari, T., M.:Effect of wort gravity, dilution rate and aeration on continuous fermentation. J. Inst. Brewing 70: 68, 1964.Google Scholar
  22. 22.
    Fiore, M., Galdiero, F.:Adattamento alla cloropromazina dell' E. coli in coltura continua. Riv. Ist. sieroterap. ital. 38: 13, 1963.Google Scholar
  23. 23.
    Foster, J. F., Litchfield, J. H.:A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle spaced system. Biotechn. Bioeng. 6: 441, 1964.CrossRefGoogle Scholar
  24. 24.
    Füvessy, I., Veress, A., Bereczky, A.:Equipment for automatically operated continuous fermentation. Proc. of the IV. Congress of the Hungarian Assoc. of Microbiologists, Budapest, September 9–October 3, p. 163, 1964.Google Scholar
  25. 25.
    Ghose, T. K., Mukherje, S. K., Basu, S. K.:Bacterial sulfide production from sulfate-enriched spent distillery liquor. III. Biotechn. Bioeng. 6: 285, 1964.CrossRefGoogle Scholar
  26. 26.
    Gori, G. B.:Trypsinization of animal tissue for cell culture: Theoretical considerations and automatic apparatus. Appl. Microbiol. 12: 115, 1964.PubMedGoogle Scholar
  27. 27.
    Gough, P. E.:Continuous brewing. V. Operational characteristics of a pilot-scale plant. J. Inst. Brewing 70: 31, 1964.Google Scholar
  28. 28.
    Grieves, R. B., Pipes, W. O., Milbury, W. F., Wood, R. K.:Piston-flow reactor model for continuous industrial fermentations. J. appl. chem. (London) 14: 478, 1964.Google Scholar
  29. 29.
    Hanula, P., Čunderlíková, M.:Výroba biologicky aktivného droždia polokontinuitnym spôsobom. Kvasný průmysl 10: 36, 1964.Google Scholar
  30. 30.
    Hemert, P.:Developments in the production of pertussis vaccine. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 44, 1964.Google Scholar
  31. 30.
    Hemert, P.:Developments in the production of pertussis vaccine. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 44, 1964.Google Scholar
  32. 31.
    Hemert, P.:The “Bilthoven unit” for submerged cultivation of microorganisms. Biotechn. Bioeng. 6: 381, 1964.CrossRefGoogle Scholar
  33. 32.
    Hemert, P., Wezel, A. L., Cohen, H. H.:Preparation of soluble Pertussis vaccine. Nature 203: 774, 1964.CrossRefGoogle Scholar
  34. 33.
    Holló, J.:A folytonos fermentáció néhány elvi kérdése. Elelmez. ipar., No. 3, p. 69, 1964.Google Scholar
  35. 34.
    Holmström, B., Hedén C.-G.:Flexibility in cultivation equipment. I. A small-scale continuous culture apparatus for the study of complex processes. Biotechn. Bioeng. 6: 419, 1964.CrossRefGoogle Scholar
  36. 35.
    Hospodka, J., Čáslavský, Z.:Regulation of concentration of dissolved oxygen during aerobic fermentations. Antibiotica Congressus, Prague June 15–19, Abstr. of papers, p. 211, 1964.Google Scholar
  37. 36.
    Humphrey, A. E., Reilly, P. J., Kitai, A., Scharer, J.:Kinetic studies of continuous organic-acid fermentations. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 14, 1964.Google Scholar
  38. 37.
    Hungate, R. E., Bryant, M. P., Mah, R. A.:The rumen bacteria and protozoa. Ann. Rev. Microbiol. 18: 131, 1964.CrossRefGoogle Scholar
  39. 38.
    Ierusalimsky, N. D.:Factors determining the steady-state in continuous culture of microorganisms. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 15, 1964.Google Scholar
  40. 39.
    Jannasch, H. W.:Wachstumuntersuchungen im Chemostaten über das Problem der Starter-Kulturen. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, I. Abteilung, 191: 433, 1963.Google Scholar
  41. 40.
    Jannasch, H. W.:Bacterial enrichment-cultures by means of the chemostat. Bact. Proceedings, Abstr. of the 64th Ann. Meeting, Washington, D. C., May 3–7, p. 23, 1964.Google Scholar
  42. 41.
    Jones, L. W., Myers, J.:Enhancement in the blue-green alga, Anacystic nidulans. Plant Physiol. 39: 938, 1964.PubMedGoogle Scholar
  43. 42.
    Kennell, D., Magasanik, B.:Control of the rate of enzyme synthesis in Aerobacter aerogenes. Biochim. Biophys. Acta 81: 418, 1964.PubMedGoogle Scholar
  44. 43.
    Kerravala, Z. J., Srinivasan, V. R., Halvorson, H. O.:Endogenous factor in sporogenesis in bacteria. J. Bacteriol. 88: 374, 1964.PubMedGoogle Scholar
  45. 44.
    Kobayashi, T., Nakamura, I.:Producing itaconic acid with Aspergillus terreus. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 22, 1964.Google Scholar
  46. 45.
    Krajovan, V., Veselinović, S., Gaćeša, S.:New aeration system for the continuous microbiological processes. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October 1964, Abstr. of papers, p. 5, 1964.Google Scholar
  47. 46.
    Krámli, A., Marek, N., Stur, J.:Measurement of redox potential of fermentation processes. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 23, 1964.Google Scholar
  48. 47.
    Kubitschek, H. E.:Mutation without segregation. Proc. Nat. Acad. Sci. USA 52: 1374, 1964.PubMedCrossRefGoogle Scholar
  49. 48.
    Kubitschek, H. E., Bendigkeit, H. E.:Mutation in continuous cultures. I. Dependence of mutational response upon growth-limiting factors. Mutation Res. 1: 113, 1964.Google Scholar
  50. 49.
    Kubitschek, H. E., Bendigkeit, H. E.:Mutation in continuous cultures. II. Mutations induced with ultraviolet light and 2-aminopurine. Mutation Res. 1: 209, 1964.Google Scholar
  51. 50.
    Kubitschek, H. E., Gustafson, L. A.:Mutation in continuous cultures. III. Mutational responses in Escherichia coli. J. Bacteriol. 88: 1380, 1964.Google Scholar
  52. 51.
    Larsen, D. H., Dimmick, R. L.:Attachment and growth of bacteria on surfaces of continuous-culture vessels. J. Bacteriol. 88: 1380, 1964.PubMedGoogle Scholar
  53. 52.
    Lefrançois, L.:Développement en continu de la levure et autre microorganismes. Ind. aliment. et agric. 81: 513, 1964.Google Scholar
  54. 53.
    Lorenz, M.:The influence of temperature on the metabolism of Torulopsis utilis. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October, p. 8, 1964.Google Scholar
  55. 54.
    Lovett, S.:Effect of deuterium on starving bacteria. Nature 203: 429, 1964.PubMedCrossRefGoogle Scholar
  56. 55.
    Maddux, W. S., Jones, R. F.:Some interactions of temperature, light intensity, and nutrient concentration during the continuous culture of Nitzchia closterium and Tetraselmis sp. Limnol. & Oceanography 9: 79, 1964.CrossRefGoogle Scholar
  57. 56.
    Malanowska, J., Skiba, M.:Production of food yeasts on concentrated molasses mashes. Przem. ferment. 6: 229, 1963.Google Scholar
  58. 57.
    Malchenko, A. L., Pychova, S. V.:Studies on yeast growth in continuous culture. (In Russian). Ferment. i spirt. prom. 30: 7, 1964. (Мальченко, А. Л., Пыхова, С. В.: Фермент. и спирт. пром. 30: 7, 1964).Google Scholar
  59. 58.
    Málek, I.et al.;Kontinuální kultivace mikroorganismů. Publ. House Czechoslov. Acad. Sci., Prague, pp. 519, 1964.Google Scholar
  60. 59.
    Málek, I., Beran, K.:Continuous cultivation of microorganisms. A review. Fol. microbiol. 7: 388, 1962.CrossRefGoogle Scholar
  61. 60.
    Málek, I., Fencl, Z.:Theoretical and experimental aspects of multistage multistream continuous culture. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 16, 1964.Google Scholar
  62. 61.
    Málek, I., Řičica, J.:Continuous cultivation of microorganisms. A review. Fol. microbiol. 9: 321, 1964.Google Scholar
  63. 62.
    Martini, A., Lorenz, M.:Microbial technical synthesis of cellular substance. VIII. Continuous production of yeast by sugar-containing substrates. Monatsber. Deut. Akad. Wiss. Berlin 6: 454, 1964.Google Scholar
  64. 63.
    Mateles, R. I., Deindoerfer, F. H., Humphrey, A. E.:1962 Fermentation review. Biotechn. 6: 18, 1964.Google Scholar
  65. 64.
    Matthern, R. O., Koch, R. B.:Developing an unconventional food, algae, by continuous culture under high light intensity. Food Technol. 18: 58, 1964.Google Scholar
  66. 65.
    McFall, E.:Genetic structure of the D-serine deaminase system of E. coli. J. Molec. Biol. 9: 746, 1964.PubMedGoogle Scholar
  67. 66.
    McFarlane, W. D.:Comparative biochemistry of “continuous” and “batch” fermentation of beer. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 16, 1964.Google Scholar
  68. 67.
    Mimura, A., Arima, S., Taguchi, H., Teramoto, S.:Continuous fermentation of L-glutamic acid. III. Distribution of production activity and its application to design. J. Ferment. Technol. (Japan) 42: 70, 1964.Google Scholar
  69. 68.
    Mimura, A., Arima, S., Taguchi, H., Teramoto, S.:Continuous fermentation of L-glutamic acid. IV. Dynamic analysis of cell recycling continuous fermentation. J. Ferment. Technol. (Japan) 42: 661, 1964.Google Scholar
  70. 69.
    Munson, R. J., Jeffery, A.:Reversion rate in continuous cultures of an Escherichia coli auxotroph exposed to gamma rays. J. Gen. microbiol. 35: 191, 1964.PubMedGoogle Scholar
  71. 70.
    Munson, R. J., Bridges, B. A.:“Take-over”—an unusual selection process in steady-state cultures of Escherichia coli. J. gen. Microbiol. 37: 411, 1964.PubMedGoogle Scholar
  72. 71.
    Nakamura, I., Kobayashi, T.:Studies on itaconic acid fermentation. V. Fundamental studies on continuous fermentation. Part III. Effects of cultural temperature and feeding rate levels of corn steep liquor on average specific rates of itaconic acid production and mycelial growth in single-stage steady-state type continuous fermentation. J. Ferment. Technol. (Japan) 42: 673, 1964.Google Scholar
  73. 72.
    Parsons, R.:Continuous fermentation—A review (Pt. 1). Brewer's Guard. 42: 17, 1963.Google Scholar
  74. 73.
    Parsons, R.:Continuous fermentation—A review (Pt. 2). Brewer's Guard. 42: 17, 1963.Google Scholar
  75. 74.
    Pirt, S. J.:Microbial synthesis in industry and its relation to microbial physiology. Chemistry and Industry, No. 43, p. 1772, 1964.Google Scholar
  76. 75.
    Pirt, S. J., Callow, D. S.:Continuous-flow culture of the ERK and L types of mamalian cells. Exp. Cell Res. 33: 413, 1964.PubMedCrossRefGoogle Scholar
  77. 76.
    Postgate, J. R., Hunter, J. R.:Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J. gen. Microbiol. 34: 459, 1964.PubMedGoogle Scholar
  78. 77.
    Preobrazhensky, A. A.:Continuous sherry processing of wines. (In Russian). Vinodel. vinograd. 24: 21, 1964. (Преображенский, А. А.: Винодел. виноград. 24: 21, 1964).Google Scholar
  79. 78.
    Rieche, A., Hilgetag, G., Martini, A., Lorenz, M.:Microbial technique for protein synthesis. IX. The cultivation of Torulopsis utilis at high temperatures. Monatsber. Deut. Akad. Wiss. Berlin 6: 578, 1964.Google Scholar
  80. 79.
    Rieche, A., Hilgetag, G., Martini, A., Thonke, M., Lorenz, M.:Die Verwertbarkeit von Monocarbonsäuren durch Torulopsis utilis. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 118: 53, 1964.Google Scholar
  81. 80.
    Ringpfeil, M.:Continuous cultivation of bacteria and yeasts on industrial substrates under limitation. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October 1964, Abstr. of papers, p. 7., 1964.Google Scholar
  82. 81.
    Robichon-Szulmajster, H., Corrivaux, D.:Regulations métaboliques de la biosynthèse de la méthionine et de la théonine chez Saccharomyces cerevisiae. III. Étude cinetique de la répression et des trois premiers enzymes de la chaîne. Biochim. Biophys. Acta 91: 1, 1964.Google Scholar
  83. 82.
    Rosa, M.:Über das Gärvermögen der Hefen bei periodischen und kontinuierlichen Alkoholgärungen. Nahrung 7: 508, 1964.CrossRefGoogle Scholar
  84. 83.
    Řičica, J.:Experimental use of the two-stage pluristream continuous system. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October 1964, of papers, p. 3. 1964.Google Scholar
  85. 84.
    Sack, W. A.:A theoretical and experimental study of factors governing the operation of continuous flow cultures with feedback. Diss. Abstr. 25. Abstr. No. 64-9752. 1964.Google Scholar
  86. 85.
    Schlegel, H. G., Lafferty, R.:Submerskultur von Hydrogenomonas mit elektrolytischer Knallgaserzeugung im Kulturgefäss. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, II. Abt., 118: 483, 1964.Google Scholar
  87. 86.
    Schmidt, R. R., Spencer, H. T.:Steady-state and synchronous growth of Chlorella pyrenoidosa. J. cell. comp. Physiol. 64: 249, 1964.CrossRefGoogle Scholar
  88. 87.
    Schulze, K. L., Lipe, R. S.:Relationship between substrate concentration, growth rate, and respiration rate of E. coli in continuous culture. Arch. Mikrobiol. 48: 1, 1964.CrossRefGoogle Scholar
  89. 88.
    Senger, H., Wolf, H.-J.:Eine automatische Verdünnungsanlage und ihre Anwendung zur Erzielung homokontinuierlicher Chlorella-Kulturen. Arch. Mikrobiol. 48: 81, 1964.CrossRefGoogle Scholar
  90. 89.
    Sher, H. N.:Discussion on general instrumentation utilized for control of a continuous fermentation process for the manufacture of baker's yeast. 2nd Conference of Yugoslav Microbiologists—Microorganisms in industrial use—Zagreb 30th September—3rd October 1964, Abstr. of papers, p. 4, 1964.Google Scholar
  91. 90.
    Sikyta, B.:Continuous cultivation of Streptomyces auerofaciens. Rozpravy ČSAV—řada matematických a přírodních věd, No. 6 (In Czech), 1964.Google Scholar
  92. 91.
    Sikyta, B., Slezák, J.:Continuous cultivation of Escherichia coli possessing high penicillin-acylase activity. Biotechn. Bioeng. 6: 309, 1964.CrossRefGoogle Scholar
  93. 92.
    Sikyta, B., Slezák, J.:Reproduction of batch growth curves in continuous culture. Arch. Mikrobiol. 49: 341, 1964.PubMedCrossRefGoogle Scholar
  94. 93.
    Slezák, J., Sikyta, B.:Continuous biosynthesis of chlortetracycline at low dilution rates. Antibiotica Congressus, Prague, June 15–19, 1964, Abstr. of papers, suppl. 1, 1964.Google Scholar
  95. 94.
    Slyter, L. L., Nelson, W. O., Wolin, M. J.:Modifications of a device for maintenance of the rumen microbial population in continuous culture. Appl. Microbiol. 12: 374, 1964.PubMedGoogle Scholar
  96. 95.
    Spaulding, E. H., Zubrzycki, L., Lanphear, J. H.:Continuous-flow culture studies with mixed strains of E. coli. Bact. Proceedings, Abstr. of the 64th Ann. Meeting, Washington, D. C., May 3–7, p. 68, 1964.Google Scholar
  97. 96.
    Strange, R. E.:Effect of magnesium on permeability control in chilled bacteria. Nature 203: 1304, 1964.PubMedCrossRefGoogle Scholar
  98. 97.
    Taguchi, H., Mimura, A., Teramoto, S.:On the mixing characteristics of continuous fermentor. J. Ferment. Technol. (Japan) 42: 329, 1964.Google Scholar
  99. 98.
    Tempest, D. W., Sykes, J.:Biochemical effect of growth-limiting conditions in continuous culture. 2nd International Fermentation Symposium, London, April 13–17, Abstr. of papers, p. 17, 1964.Google Scholar
  100. 99.
    Terui, G., Konno, N., Okazaki, M.:Glucamylase production by multistage continuous culture. 2nd International Fermentation Symposium London, April 13–17, Abstr. of papers, p. 18, 1964.Google Scholar
  101. 100.
    Terui, G., Okazaki, M.:Problems of residence age-activity distribution in continuous culture. J. Ferment. Technol. (Japan) 42: 320, 1964.Google Scholar
  102. 101.
    Veress, A., Füvessy, I., Böszörmenyi, J.:Continuous cultivation of Streptococcus pyogenes in automatized fermentor. Proc. of the IV. Congress of the Hungarian Assoc. of Microbiologists, Budapest September 30–October 3, p. 164, 1964.Google Scholar
  103. 102.
    Usov, V. M.:Apparatus for continuous cultivation of fruit juice. (In Russian). Vinodel. vinograd. 24: 57, 1964. (Усов, В. М.: Винодел. виноград. 24: 57, 1964).Google Scholar
  104. 103.
    Wang, D. I-C., Humphrey, A. E., Eagleton, L. C.:Measurement of the kinetics of biological systems at elevated temperatures utilizing flow techniques. Biotechn. Bioeng. 6: 367, 1964.CrossRefGoogle Scholar
  105. 104.
    Ware, G. C., Quesnel, L. B., Greenham, L. W.:Continuous culture; A simple explanation. A film. Soc. for Gen. Microbiol., 39th Gen. Meeting, January 2–3, 1964. Commun. published in: J. gen. Microbiool. 34: XIII, 1964.Google Scholar
  106. 105.
    Webb, R. B., Kubitschek, H. E.:Mutagenic and antimutagenic effects of acridine orange in Escherichia coli. Bioch. Biophys. Res. Commun. 13: 90, 1963.CrossRefGoogle Scholar
  107. 106.
    Woolfolk, C. A., Stadtman, E. R.:Cumulative feedback inhibition in the multiple end product regulation of glutamine synthetase activity in Escherichia coli. Bioch. Biophys. Res. Commun. 17: 313, 1964.CrossRefGoogle Scholar
  108. 107.
    Yarovenko, V. L., Nakhmanovich, B. M., Scheblykin, N. P., Senkevich, V. V.:Continuous fermentation of acetone-butanol. (In Russian). Kabardhino-Balkharskoe knizhn. izdatelstvo, pp. 250, 1963. Commun. in: Ferment. i spirt. promyshlennost, No. 7, 1964. (Яровенко, В. Л., Нахманович, Б. М., Щебликин, Н. П., Сенкевич, В. В.: Кабардино-Балькарское книжн. издател. ст. 250, 1963, Фермент. и спирт. пром. ю 7, 1964).Google Scholar
  109. 108.
    Yosuda, T., Mateles, R. I.:Response of continuous culture of Escherichia coli. Amer. Chem. Soc., 148th Meeting, Chicago, presented to the Div. of Microbial Chem. and Technol., 1964.Google Scholar
  110. 109.
    Zhvirblyanskaya, A. J.:Selection of the new brewer's yeast strains used in continuous fermentation (In Russian). Ferment. i spirt. promyshlennost. 30: 22, 1964. (Жвирблянская, А. Й.: Фермент. и спирт. пром. 30: 22, 1964).Google Scholar
  111. 110.
    Zubrzycki, L., Spaulding, E. H., Landphear, J. H.:Characteristics of a generalized transducing phage for Escherichia coli serotype 04. Bact. Proceedings, Abstr. of the 64th Ann. Meeting, Washington, D. C., May 3–7, 1964.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1965

Authors and Affiliations

  • I. Málek
    • 1
  • J. Řičica
    • 1
  1. 1.Department of Technical Microbiology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations