Experiments with osteoblasts cultured under hypergravity conditions

  • Melissa A. Kacena
  • Paul Todd
  • Louis C. Gerstenfeld
  • William J. Landis


To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditionsin vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (∼90 cells/microscopic field). Specifically, confluent 1.0G control cultures contained an average of 91±8 cells/field, 3.3G samples had 88±8 cells/field, and 4.0G cultures averaged 90±7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (1.0G was similar to 3.3 and 4.0G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18–23% decrease) and an increase in number of vinculin bulbs (202–374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast-substrate adhesion.


Human Dermal Fibroblast Actin Stress Fiber Growth Duration Actin Fiber Attached Osteoblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1.]
    Holick, M. F.: Perspective on the impact of weightlessness on calcium and bone metabolism. Bone, vol. 22, p. 105S (1998).Google Scholar
  2. [2.]
    Miyamoto, A., Shigematsu, T., Fukunaga, T., Kawakami, K., Mukai, C., Sekiguchi, C.: Medical baseline data collection on bone and muscle change with space flight. Bone, vol. 22, p. 79S (1998).Google Scholar
  3. [3.]
    Vico, L., Lafage-Proust, M.-H., Alexandre, C.: Effects of gravitational changes on the bone system in vitro and in vivo. Bone, vol. 22, p. 95S (1998).Google Scholar
  4. [4.]
    Carmeliet, G., Nys, G., Stockmans, I., Bouillon, R.: Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone, vol. 22, p. 139S (1998).Google Scholar
  5. [5.]
    Forkheim, K. E., Schenker, E. B.: Microgravity induced osteoporosis study on STS-80 space flight. Gravitational Space Biology Bulletin, vol. 12, p. 58 (1998).Google Scholar
  6. [6.]
    Guignandon, A., Lafage-Proust, M.-H., Usson, Y., Laroche, N., Caillot-Augusseau, A., Alexandre, C., Vico, L.: Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB Journal, vol. 15, p. 2036 (2001).Google Scholar
  7. [7.]
    Hughes-Fulford, M., Tjandrawinata, R., Fitzgerald, J., Gasuad, K., Gilbertson, V.: Effects of microgravity on osteoblast growth. Gravitational Space Biology Bulletin, vol. 11, p. 51 (1998).Google Scholar
  8. [8.]
    Hughes-Fulford, M., Lewis, M. L.: Effects of microgravity on osteoblast growth activation. Experimental Cell Research, vol. 224, p. 103 (1996).CrossRefGoogle Scholar
  9. [9.]
    Kaplansky, A. S., Durnova, G. N., Burkovskaya, T. E., Vorotnikova, E. V.: The effect of microgravity on bone fracture healing in rats flown on Cosmos-2044. Physiologist, vol. 34, p. S196 (1991).Google Scholar
  10. [10.]
    Landis, W. J., Hodgens, K. J., Block, D., Toma, C. D., Gerstenfeld, L. C.: Spaceflight effects on cultured embryonic chicken bone cells. Journal of Bone and Mineral Research, vol. 15, p. 1099 (2000).CrossRefGoogle Scholar
  11. [11.]
    Roberts, W. E., Mozsary, P. G., Morey, E. R.: Suppression of osteoblast differentiation during weightlessness. Physiologist, vol. 24, p. S75 (1981).Google Scholar
  12. [12.]
    Roberts, W. E., Fielder, P. J., Rosenoer, L. M. L., Maese, A. C., Gonsalves, M. R., Morey, E. R.: Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL-3 rats. American Journal of Physiology, vol. 252, p. R247 (1987).Google Scholar
  13. [13.]
    Amtmann, E., Oyama, J.: Effect of chronic centrifugation on the structural development of the musculoskeletal system of the rat. Anatomy and Embryology, vol. 149, p. 47 (1976).CrossRefGoogle Scholar
  14. [14.]
    Bromage, T. G., Smolyar, I., Doty, S. B., Holton, E.: Growth rate variability of lamellar bone in rats exposed to macrogravity (2G+). Gravitational Space Biology Bulletin, vol. 12, p. 34 (1998).Google Scholar
  15. [15.]
    Kohles, S. S., Bowers, J. R., Vailas, A. C., Vanderby, R. Jr.: Effect of a hypergravity environment on cortical bone elasticity in rats. Calcified Tissue International, vol. 59, p. 214 (1996).CrossRefGoogle Scholar
  16. [16.]
    Martinez, D. A., Orth, M. W., Carr, K. E., Vanderby, R. Jr., Vasques, M., Grindeland, R. E., Vailas, A. C.: Cortical bone responses to 2G hypergravity in growing rats. Aviation, Space, and Environmental Medicine, vol. 69, p. A17 (1998).Google Scholar
  17. [17.]
    Vico, L., Barou, O., Laroche, N., Alexandre, C., Lafage-Proust, M. H.: Effects of centrifuging at 2g on rat long bone metaphyses. European Journal of Applied Physiology and Occupational Physiology, vol. 80, p. 360 (1999).CrossRefGoogle Scholar
  18. [18.]
    Fitzgerald, J., Hughes-Fulford, M.: Gravitational loading of a simulated launch alters mRNA expression in osteoblasts. Experimental Cell Research, vol. 228, p. 168 (1996).CrossRefGoogle Scholar
  19. [19.]
    Gebken, J., Luders, B., Notbohm, H., Klein, H. H., Brinckmann, J., Muller, P. K., Batge, B.: Hypergravity stimulates collagen synthesis in human osteoblast-like cells: evidence for the involvement of p44/42 MAP-kinases (ERK 1/2). Journal of Biochemistry, vol. 126, p. 676 (1999).Google Scholar
  20. [20.]
    Kawashima, K., Shibata, R., Negishi, Y., Endo, H.: Stimulative effect of high-level hypergravity on differentiated functions of osteoblast-like cells. Cell Structure and Function, vol. 23, p. 221 (1998).CrossRefGoogle Scholar
  21. [21.]
    Miwa, M., Kozawa, O., Tokuda, H., Kawakubo, A., Yoneda, M., Oiso, Y., Takatsuki, K.: Effects of hypergravity on proliferation and differentiation of osteoblast-like cells. Bone Mineralization, vol. 14, p. 15 (1991).CrossRefGoogle Scholar
  22. [22.]
    Nose, K., Shibanuma, M.: Induction of early response genes by hypergra vity in cultured mouse osteoblastic cells (MC3T3-E1). Experimental Cell Research, vol. 211, p. 168 (1994).CrossRefGoogle Scholar
  23. [23.]
    Guignandon, A., Usson, Y., Laroche, N., Lafage-Proust, M.-H., Sabido, O., Alexandre, C., Vico, L.: Effects of intermittent or continuous gravitational stresses on cell-matrix adhesion: quantitative analysis of focal contacts in osteoblastic ROS 17/2.8 cells. Experimental Cell Research, vol. 236, p. 66 (1997).CrossRefGoogle Scholar
  24. [24.]
    Croute, F., Gaubin, Y., Pianezzi, B., Soleilhavoup, J. P.: Effects of hypergravity on the cell shape and on the organization of cytoskeleton and extra cellular matrix molecules of in vitro human dermal fibroblasts. Microgravity Science and Technology, vol. VIII, p. 118 (1995).Google Scholar
  25. [25.]
    Gaubin, Y., Pianezzi, B., Soleihavoup, J.-P., Croute, F.: Modulation by hypergravity of extracellular matrix macromolecules in in vitro human dermal fibroblasts. Biochemicia et Biophysica Acta, vol. 1245, p. 173 (1995).Google Scholar
  26. [26.]
    Seitzer, U., Bodo, M., Muller, P. K., Acil, Y., Batge, B.: Microgravity and hypergravity effects on collagen biosynthesis of human dermal fibroblasts. Cell Tissue Research, vol. 282, p. 513 (1995).CrossRefGoogle Scholar
  27. [27.]
    Kacena, M. A.: Osteoblast modulation by gravitational forces. Ph.D. Dissertation. University of Colorado, Boulder (1999).Google Scholar
  28. [28.]
    Gerstenfeld, L. C., Chipman, S. D., Glowacki, J., Lian, J. B.: Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Developmental Biology, vol. 122, p. 49 (1987).CrossRefGoogle Scholar
  29. [29.]
    Luttges, M. W.: Recognizing and optimizing flight opportunities with hardware and life sciences limitations. Transactions of the Kansas Academy of Science, vol. 95, p. 76 (1992).CrossRefGoogle Scholar
  30. [30.]
    Guignandon, A., Genty, C., Vico, L., Lafage-Proust, M.-H., Palle, S., Alexandre, C.: Demonstration of feasibility of automated osteoblastic line culture in space flight. Bone, vol. 20, p. 109 (1997).CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2004

Authors and Affiliations

  • Melissa A. Kacena
    • 1
  • Paul Todd
    • 2
  • Louis C. Gerstenfeld
    • 3
  • William J. Landis
    • 4
  1. 1.Dept. of Orthopaedics and RehabilitationYale University School of MedicineNew HavenUSA
  2. 2.SHOT IncGreenville
  3. 3.Dept. of Musculoskeletal ResearchBoston University School of MedicineBoston
  4. 4.Dept. of Biochemistry and Molecular PathologyNortheastern Ohio Universities College of MedicineRootstown

Personalised recommendations