Advertisement

Effect of rotation on surface tension driven flow during protein crystallization

  • P. Bhattacharjee
  • D. N. Riahi
Article

Abstract

The effect of rotation on surface tension gradient driven flow, also known as Marangoni convective flow, during protein crystallization is modeled and studied computationally under microgravity conditions, where the surface tension gradient force is the main significant driving force. The main parameters are the solutal Marangoni number Mc, representing the surface tension gradient force and the Taylor number Ta representing the rotational effect. The numerical computations for various values of the parameters and low gravity levels indicated nontrivial competing effects, due to surface tension gradient, centrifugal and Coriolis forces on the flow adjacent to the protein crystal interface and the associated solute flux. In particular, for given values of Mc, certain values of Ta were detected where the Sherwood number (Sh), representing the convective solute flux, and the convective flow effects are noticeably reduced. These results can provide conditions under which convective flow transport during the protein crystallization approaches the diffusion limited transport, which is desirable for the production of higher quality protein crystals.

Keywords

Coriolis Force Sherwood Number Velocity Scale Marangoni Number Surface Tension Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Delucas, L. J., Smith, C. D., Smith, W., Vijay-Kumar, S., Senadhi, S. E., Ealick, S. E., Carter, D. C., Snyder, R. S., Weber, P. C., Raymond Salemme, F., OhAlendorf, D. H., Einspahr, H. M., Clancy, L. L., Navia, M. A., McKeever, B. M., Nagabhushan, T. L., Nelson, G., McPherson, A., Kozelak, S., Taylor, G., Stammers, D., Powel, K., Darby, G., Bugg, C. E.: Protein Crystal Growth Results for Shuttle Flights. Journal of Crystal Growth, vol. 110, pp. 302–311 (1991).CrossRefGoogle Scholar
  2. [2]
    Day, J., McPherson, A.: Macromolecular Crystal Growth Experiments on International Microgravity Laboratory. Protein Science, vol. 1, pp. 1254–1268 (1992).CrossRefGoogle Scholar
  3. [3]
    Delucas, L. J., Long, M. M., Moore, K. M., Rosenblum, W. M., Bray, T. L., Smith, C., Carson, M., Narayana, S. V. L., Harrington, M. D., Clark A, D., Jr.,Nanni, R. G., Ding, J., Jacobo-Molina A., Kamer, G., Hughes, H. S., Arnold, E., Einspahr, H. M., Clancy, L. L., Rao, G. S. J., Cook, P. F., Harris, B. J., Munson, S. H., Finzel, B. C., McPherson, A., Weber, P. C., Lewandowski, F. A., Nagabhushan, T. L., Trotta, P. P., Reichert, P., Navia, M. A., Wilson, K. P., Thomson, J. A., Richards, R. N., Bowersox, K. D., Meade, C. J., Baker, E. S., Bishop, S. P., Dumbar, B. J., Trinh, E., Prahl, J., Sacco A., Jr.,Bugg, C. E.: Recent Results and New Hardware Developments for Protein Crystal Growth in Microgravity. Journal of Crystal Growth, vol. 135, pp. 183–195 (1994).CrossRefGoogle Scholar
  4. [4]
    Long, M. M., Delucas, L. J., Smith, C., Carson, M., Moore, K., Harrington, M. D., Pillion, D. J., Bishop, S. P., Rosenblum, W. M., Naumann, R. J., Chait, A., Prahl, J., Bugg, C. E.: Protein Crystal Growth in Microgravity-Temperature induced Large Scale Crystallization of Insulin. Microgravity Science and Technology, vol. 7(2), pp. 196–202 (1994).Google Scholar
  5. [5]
    Lie, K. H., Walker, J. S., Riahi, D. N.: Centrifugal pumping in a liquid cylinder in an axial magnetic field with application to semi-conductor crystal growth. Proceedings of the First Congress in Fluid Dynamics, vol. 3, pp. 2141–2147 (1988).Google Scholar
  6. [6]
    Lie, K. H., Walker, J. S., Riahi, D. N.: Centrifugal pumping in the floatzone growth of silicon crystal with an axial magnetic field. Journal of Physico-Chemical Hydrodynamics, vol.10, pp. 441–460 (1988).Google Scholar
  7. [7]
    Riahi, D. N.: Effects of centrifugal and Coriolis forces on chimney convection during alloy solidification. Journal of Crystal Growth, vol. 179, pp. 287–296 (1997).CrossRefGoogle Scholar
  8. [8]
    Riahi, D. N.: Effect of rotation on a non-axiymmetric chimney convection during alloy solidification. Journal of Crystal Growth, vol. 204, pp. 382–394 (1999).CrossRefGoogle Scholar
  9. [9]
    Riahi, D. N.: Effects of centrifugal and Coriolis forces on a hydromagnetic chimney convection in a mushy layer. Journal of Crystal Growth, vol. 226, pp. 393–405 (2001).CrossRefGoogle Scholar
  10. [10]
    Davis, S. H.: Thermocapillary Instabilities. Annual Review of Fluid Mechanics, vol. 19, pp. 403–435 (1987).MATHCrossRefGoogle Scholar
  11. [11]
    Scanlon, J., Segel, L.: Finite Amplitude Cellular Convection Induced by Surface Tension. Journal of Fluid Mechanics, vol. 30, pp. 149–162 (1967).MATHCrossRefGoogle Scholar
  12. [12]
    Lebon, G., Cloot, A.: Buoyancy and Surface Tension Driven Instabilities in Presence of Negative Rayleigh and Marangoni Numbers. Acta Mechanica, vol. 43, pp. 141–158 (1982).MATHCrossRefGoogle Scholar
  13. [13]
    Lebon, G., Cloot, A.: A Nonlinear Stability Analysis of the Benard-Marangoni Problem. Journal of Fluid Mechanics, vol. 145, pp. 447–469 (1984).MATHCrossRefGoogle Scholar
  14. [14]
    Riahi, D. N.: Thermocapillary Instability of an Infinite Prandtl Number Fluid with Negligible Gravitational Effects. Acta Mechanica, vol. 64, pp. 155–163 (1986).MATHCrossRefGoogle Scholar
  15. [15]
    Riahi, D. N.: Nonlinear Benard-Marangoni Convection. Journal of the Physical Society of Japan, vol. 56, pp. 3515–3524 (1987).CrossRefMathSciNetGoogle Scholar
  16. [16]
    Riahi, D. N.: Thermocapillary Instability of a Low Prandtl Number Fluid with Negligible Gravitational Effects. Acta Mechanica, vol. 71, pp. 249–252 (1988).CrossRefGoogle Scholar
  17. [17]
    Riahi, D. N.: Hexagon Pattern Convection for Benard-Marangoni Problem. International Journal of Engineering Sciences, vol. 27, pp. 689–700 (1989).MATHCrossRefGoogle Scholar
  18. [18]
    Ramachandran, N.: Thermal Buoyancy and Marangoni Convection in a Two Fluid Layered System. Journal of Thermophysics and Heat Transfer, vol. 7, pp. 352–360 (1993).Google Scholar
  19. [19]
    Kliakhandler, I. L., Nepomnyashchy, A. A., Simanovski, I. B., Zaks, M. A.: Nonlinear Marangoni waves in Multilayer System. Physical Review E, vol. 58, pp. 5765–5775 (1998).CrossRefGoogle Scholar
  20. [20]
    Bragard, J., Velarde, M. G.: Benard-Marangoni Convection: Planforms and Related Theoretical Predictions. Journal of Fluid Mechanics, vol. 368, pp. 165–194 (1998).MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Riahi, D. N.: Nonlinear Benard-Marangoni Convection in a Rotating Layer. Letters in Applied and Engineering Sciences, vol. 32, pp. 877–882 (1994).MATHGoogle Scholar
  22. [22]
    Riahi, D. N., Walker, J. S.: Nonlinear Thermocapillary Convection in a Liquid Cylinder. Proceedings of the First Congress in Fluid Dynamics, vol. 3, pp. 1908–1913 (1988).Google Scholar
  23. [23]
    Lie, K. H., Riahi, D. N., Walker, J. S.: Buoyancy and Surface Tension Driven Flows in Float Zone Crystal Growth with a Strong Axial Magnetic Field. International Journal of Heat and Mass Transfer, vol. 32, pp. 2409–2420 (1989).CrossRefGoogle Scholar
  24. [24]
    Molenkamp, T.: Marangoni Convection, Mass Transfer and Microgravity. Thesis. The Dutch Experiment Support Center (1998).Google Scholar
  25. [25]
    Rosenberger, F.: Inorganic and Protein Crystal Growth. Journal of Crystal Growth, vol. 76, pp. 618–636 (1986).CrossRefGoogle Scholar
  26. [26]
    Monti, R., Savino, R.: Fluid-Dynamic Modelling of Protein Crystallizers, in: Materials and Fluids Under Low Gravity. Ratke, L., Walter, H., Feuerbacher, B. (Eds.), Springer-Verlag, Berlin, pp. 171–194 (1996).CrossRefGoogle Scholar
  27. [27]
    Monti, R., Savino, R.: Buoyancy and Surface-Tension-Driven Convection in a Hanging Drop Protein Crystallizer. Journal of Crystal Growth, vol. 165, pp. 308–318 (1996).CrossRefGoogle Scholar
  28. [28]
    Ramachandran, N., Baugher, C. R., Naumann, R. J.: Modeling Flows and Transport in Protein Crystal Growth. Microgravity Science and Technology, vol. 8(3), pp. 170–179 (1995).Google Scholar
  29. [29]
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford, (1961).MATHGoogle Scholar
  30. [30]
    Smith, M.K., “Thermocapillary and centrifugal buoyancy driven motion in a rapidly rotating liquid cylinder”Journal of Fluid Mechanics, Vol 166, pp. 245–264 (1986).MATHCrossRefGoogle Scholar
  31. [31]
    Lan, C.W., and Tu, C.Y., “Three dimensional analysis of flow and segregation by slow rotation for Bridgman crystal growth in microgravity”Journal of Crystal Growth pp 1881–1885 (April 2002)Google Scholar

Copyright information

© Z-Tec Publishing 2003

Authors and Affiliations

  • P. Bhattacharjee
    • 1
  • D. N. Riahi
    • 2
  1. 1.Department of Aeronautical and Astronautical Engineering, 306 Talbot LaboratoryUSA
  2. 2.Department of Theoretical and Applied Mechanics, 216 Talbot LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations