Advertisement

Counterdiffusion protein crystallisation in microgravity and its observation with PromISS (protein microscope for the international space station)

  • Ingrid Zegers
  • Luigi Carotenuto
  • Christine Evrard
  • JuanMa Garcia-Ruiz
  • Philippe De Gieter
  • Luis Gonzales-Ramires
  • Eric Istasse
  • Jean-Claude Legros
  • Joseph Martial
  • Christophe Minetti
  • Fermin Otalora
  • Patrick Queeckers
  • Cedric Schockaert
  • Cecile VandeWeerdt
  • Ronnie Willaert
  • Lode Wyns
  • Catherine Yourassowsky
  • Frank Dubois
Article

Abstract

The crystallisation by counterdiffusion is a very efficient technique for obtaining high-quality protein crystals. A prerequisite for the use of counterdiffusion techniques is that mass transport must be controlled by diffusion alone. Sedimentation and convection can be avoided by either working in gelled systems, working in systems of small dimensions, or in the absence of gravity. We present the results from experiments performed on the ISS using the Protein Microscope for the International Space Station (PromISS), using digital holography to visualise crystal growth processes. We extensively characterised three model proteins for these experiments (cablys3*lysozyme, triose phosphate isomerase, and parvalbumin) and used these to assess the ISS as an environment for crystallisation by counterdiffusion. The possibility to visualise growth and movement of crystals in different types of experiments (capillary counterdiffusion and batch-type) is important, as movement of crystals is clearly not negligible.

Keywords

Lysozyme International Space Station Crystal Growth Rate Triose Phosphate Isomerase Digital Holography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference List

  1. 1.
    Zagalsky, P. F., Wright, C. E., andParsons, M.: Crystallization of laphacrustacyanin, the lobster carapace astaxanthin-protein: results from EURECA., Adv.Space Res. vol. 16, pp. 91–94 (1995).CrossRefGoogle Scholar
  2. 2.
    Vergara, A., Lorber, B., Zagari, A., andGiege, R.: Physical aspects of protein crystal growth investigated with the Advanced Protein Crystallization Facility in reduced-gravity environments, Acta Crystallographica Section D-Biological Crystallography vol. 59, pp. 2–15 (2003).CrossRefGoogle Scholar
  3. 3.
    Snell, E. H. andHelliwell, J. R.: Macromolecular crystallization in microgravity, Rep.Prog.Phys. vol. 68, pp. 799–853 (2005).CrossRefGoogle Scholar
  4. 4.
    Chayen, N. andHelliwell, J. R.: Protein crystallizationj in microgravity: are we reaping the full benefit of outer space?, Annal.New York Academy of Sciences vol. 594, pp. 591–597 (2002).CrossRefGoogle Scholar
  5. 5.
    Ng, J. D., Gavira, J. A., andGarcia-Ruiz, J. M.: Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination, Journal of Structural Biology vol. 142, pp. 218–231 (2003).CrossRefGoogle Scholar
  6. 6.
    Maes, D., Gonzalez-Ramirez, L. A., Lopez-Jaramillo, J., Yu, B., De Bondt, H., Zegers, I., Afonina, E., Garcia-Ruiz, J. M., andGulnik, S.: Structural study of the type II 3-dehydroquinate dehydratase from Actinobacillus pleuropneumoniae, Acta Crystallogr.D.Biol.Crystallogr. vol. 60, pp. 463–471 (2004).CrossRefGoogle Scholar
  7. 7.
    Otalora, F. andGarciaRuiz, J. M.: Computer model of the diffusion reaction interplay in the gel acupuncture method, Journal of Crystal Growth vol. 169, pp. 361–367 (1996).CrossRefGoogle Scholar
  8. 8.
    Carotenuto, L., Piccolo, C., Castagnolo, D., Lappa, M., Tortora, A., andGarcia-Ruiz, J. M.: Experimental observations and numerical modelling of diffusion-driven crystallisation processes, Acta Crystallographica Section D-Biological Crystallography vol. 58, pp. 1628–1632 (2002).CrossRefGoogle Scholar
  9. 9.
    Dubois, F., Joannes, L., andLegros, J. C.: Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence, Applied Optics vol. 38, pp. 7085–7094 (12-1-1999).Google Scholar
  10. 10.
    Dubois, F., Requena, M. L. N., Minetti, C., Monnom, O., andIstasse, E.: Partial spatial coherence effects in digital holographic microscopy with a laser source, Applied Optics vol. 43, pp. 1131–1139 (2-10-2004).CrossRefGoogle Scholar
  11. 11.
    Garcia-Ruiz, J. M., Drenth, J., Ries-Kautt, M., and Tardieu, A: Physical sciences and applications — Macromolecular crystallisation, pp. 159–171 (2001).Google Scholar

Copyright information

© Z-Tec Publishing 2006

Authors and Affiliations

  • Ingrid Zegers
    • 1
  • Luigi Carotenuto
    • 2
  • Christine Evrard
    • 3
  • JuanMa Garcia-Ruiz
    • 4
  • Philippe De Gieter
    • 5
  • Luis Gonzales-Ramires
    • 4
  • Eric Istasse
    • 5
  • Jean-Claude Legros
    • 5
  • Joseph Martial
    • 6
  • Christophe Minetti
    • 5
  • Fermin Otalora
    • 4
  • Patrick Queeckers
    • 5
  • Cedric Schockaert
    • 5
  • Cecile VandeWeerdt
    • 6
  • Ronnie Willaert
    • 1
  • Lode Wyns
    • 1
  • Catherine Yourassowsky
    • 5
  • Frank Dubois
    • 5
  1. 1.Department UltrastructureBrusselsBelgium
  2. 2.MARS CenterNapoliItaly
  3. 3.UCL-CSTRLovain-la-NeuveBelgium
  4. 4.Laboratorio de Estudios Cristalográficos, Edificio BIC GranadaArmilla, GranadaSpain
  5. 5.Microgravity Research centreULBBruxellesBelgium
  6. 6.Labo de biologie moléculaire et de génie génétiqueLiègeBelgium

Personalised recommendations