Advertisement

Facility for adsorption and surface tension studies (FAST) on board of shuttle STS-107 mission: Determination of the surface dilational modulus as a function of concentration and temperature for aqueous solutions of dodecyl-dimethyl-phosphine-oxide, in the 0.01–0.32 Hz frequency range

  • Giuseppe Loglio
  • Piero Pandolfini
  • Reinhard Miller
  • Alexander Makievski
  • Jürgen Krägel
  • Libero Liggieri
  • Francesca Ravera
  • Michele Ferrari
  • Alberto Passerone
Article

Abstract

Measurements of dynamic-surface-tension responses to harmonic surface perturbations, in the low-frequency range, are reported for aqueous solutions of n-dodecyl-dimethyl-phosphine-oxide. From the primary observed results of the steady-state surface oscillation behaviour, the inherent surface dilational modulus is determined at different frequencies, at various concentrations up to the critical micellar concentration and at three temperatures (i.e., at T=15, 25 and 35 °C). The obtained experimental values are successfully interpreted in terms of the diffusion-controlled model. The experiments grant reliable information about the constitutive dynamic properties of air-liquid single interfaces.

Keywords

Critical Micellar Concentration Dilational Elasticity Inherent Surface Equilibrium Thermodynamic Property Surface Tension Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    L. Liggieri, F. Ravera, M. Ferrari, A. Passerone, G. Loglio, R. Miller, A.V. Makievski, J. Krägel, Microgravity sci. technol., submitted.Google Scholar
  2. [2]
    G. Loglio, P. Pandolfini, R. Miller, A.V. Makievski, J. Krägel, F. Ravera, L. Liggieri, Microgravity sci. technol. XVI-1 (2005) 205–209.Google Scholar
  3. [3]
    J. Krägel, V. I. Kovalchuk, A.V. Makievski, M. Simoncini, F. Ravera, L. Liggieri.G. Loglio, R. Miller, Microgravity sci. technol. XVI-1 (2005) 186–190.CrossRefGoogle Scholar
  4. [4]
    K. Lunkenheimer, K. Haage, R. Miller, Colloids Surfaces, 22 (1987) 215–224.CrossRefGoogle Scholar
  5. [5]
    G. Loglio, P. Pandolfini, R. Miller, A.V. Makievski, J. Krägel, F. Ravera, Phys. Chem. Chem. Phys., 6, (2004) 1375.CrossRefGoogle Scholar
  6. [6]
    G. Loglio, P. Pandolfini, R. Miller, A.V. Makievski, J. Krägel, F. Ravera, B. A. Noskov, Colloids Surf. A: Physicochem. Eng. Aspects 261 (2005) 57–63.CrossRefGoogle Scholar
  7. [7]
    J. Lucassen, M. van den Tempel, Chem. Eng. Sci., 27 (1972) 283.Google Scholar
  8. [8]
    J. Lucassen, D. Giles, J. Chem. Soc. Faraday Trans. I, 71 (1975) 217.CrossRefGoogle Scholar
  9. [9]
    H. Fruhner, K.-D. Wantke, Colloids Surf. A: Physicochemical and Engineering Aspects 114 (1996) 53–59.CrossRefGoogle Scholar
  10. [10]
    V.I. Kovalchuk, G. Loglio, V.B. Fainerman, R. Miller, J. Colloid Interface Sci., 270 (2004) 475–482.CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2006

Authors and Affiliations

  • Giuseppe Loglio
    • 1
  • Piero Pandolfini
    • 1
  • Reinhard Miller
    • 2
  • Alexander Makievski
    • 2
  • Jürgen Krägel
    • 2
  • Libero Liggieri
    • 3
  • Francesca Ravera
    • 3
  • Michele Ferrari
    • 3
  • Alberto Passerone
    • 3
  1. 1.Department of Organic ChemistryUniversity of FlorenceSesto Fiorentino, FlorenceItaly
  2. 2.Max-Planck Institut für Kolloid- und GrenzflächenforschungPostdam / GolmGermany
  3. 3.CNR - Istituto per l’Energetica e le Interfasi Sezione di GenovaGenoaItaly

Personalised recommendations