Advertisement

American Journal of Potato Research

, Volume 81, Issue 5, pp 359–370 | Cite as

Inheritance of glucose content in tubers of diploid potato families

  • Henryka Jakuczun
  • Ewa Zimnoch-Guzowska
Article

Abstract

During two consecutive years 17 unselected families of diploid potatoes in comparison to their parents and standard cultivars were assessed for glucose content in tubers. Glucose content was evaluated using Potato Test Strips in tubers stored at 10 C, 4 C, and 4 C followed by reconditioning at 18 C. Distribution of glucose content in families indicated that the trait is inherited in a polygenic way. Transgressive individuals in families in comparison to respective parents were found in all treatments applied. Maternal effect on glucose content in tubers was found in one out of three tested families after cold storage (4 C) and the same families after reconditioning. Analysis of variance showed significant influence of year on the trait. Significance of GCA and SCA showed that both additive effects and genetic interactions are involved in determining of glucose content in tubers in all applied treatments. It was found that glucotests can be recommended for evaluation of chipping ability in early stages of selection.

Additional Key Words

Solanum spp. 2x combining ability heritability maternal effect glucotests 

Resumen

Durante dos años consecutivos se evaluó el contenido de glucosa en tubérculos de 17 familias no seleccionadas de papa diploide, comparándolo con sus progenitores y cultivares estándar. La evaluación de glucosa se realizó por el método de cintas glucosadas en tubérculos almacenados a 10 C, 4 C, y 4 C, seguido de un reacondicionamiento a 18 C. La distribución del contenido de glucosa entre las familias, indicó que esta característica es heredada de manera poligénica. En todos las familias se encontró segregación transgresiva con respecto a sus progenitores respectivos. El efecto materno sobre el contenido de glucosa en los tubérculos se encontró en una de cada tres familias probadas después del almacenamiento en frío (4 C) y en las mismas familias después del reacondicionamiento. El análisis de variancia mostró una influencia significativa del tiempo transcurrido sobre el contenido de glucosa. La importancia de GCA y SCA demostró que los efectos aditivos y la interacción genética están involucrados en la determinación del contenido de glucosa de los tubérculos en todos los tratamientos. Se encontró que se puede recomendar la prueba de glucosa para evaluar la habilidad de los tubérculos para ser usados en hojuelas en estados de tempranos de selección.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Accatino PISC, and JS Peloquin. 1973. Inheritance of potato chip color at the diploid and tetraploid levels of ploidy. Amer Potato J 50:335–336. (abst)Google Scholar
  2. Bradshaw JE, MFB Dale, GEL Swan, D Todd, and RN Wilson. 1998. Early-generation selection between and within pair crosses in a potato (Solanum tuberosum subsp.tuberosum) breeding programme. Theor Appl Genet 97:1331–1339.CrossRefGoogle Scholar
  3. Brown J, and MFB Dale. 1998. Identifying superior parents in a potato breeding program using cross prediction techniques. Euphytica 104:143–149.CrossRefGoogle Scholar
  4. Brown J, GR Mackay, H Bain, DW Griffith, and MJ Allison. 1990. The processing potential of tubers of the cultivated potato,Solanum tuberosum L., after storage at low temperatures. Potato Res 33:219–227.CrossRefGoogle Scholar
  5. Caliński T, S Czajka, Z Kaczmarek, P Krajewski, and L Siatkowski. 1998. SERGEN 3. Analiza serii doswiadczen odmianowych i genetyczno-hodowlanych. Instytut Genetyki Roślin PAN, Poznań, Polska. pp. 1–58.Google Scholar
  6. Chitsaz M. 1983. Inheritance of factors affecting quality of processed potatoes (Solanum tuberosum groupTuberosum L.). PhD dissertation. North Dakota State University.Google Scholar
  7. Coffin R, MK Keenan, R Yada, G Tai, M Slavnik, and G Johnston. 1988. Inheritance of genetic factors controlling chip processing quality after tuber storage at low temperatures. Am Potato J 65:474. (abst)CrossRefGoogle Scholar
  8. Coffin RH, RY Yada, KL Parkin, B Grodzinski, and DW Stanley. 1987. Effect of low temperature storage on sugar concentrations and chip color of certain processing potato cultivars and selections. J Food Sci 52:639–645.CrossRefGoogle Scholar
  9. Colon LT, L Sijpkes, and KJ Hartmans. 1989. The cold stability ofSolanum goniocalyx andS. phureja can be transferred to adapted diploid and tetraploidS. tuberosum germplasm.In: KM Louwes, HAJM Toussaint, and LMW Dellaert (eds), Parental Line Breeding and Selection in Potato Breeding. Pudoc, Wageningen, The Netherlands. pp. 76–79.Google Scholar
  10. Cunningham CE, and FJ Stevenson. 1963. Inheritance of factors affecting potato chip color and their association with specific gravity. Am Potato J 40:253–265.CrossRefGoogle Scholar
  11. Dale MFB, and GR Mackay. 1994. Inheritance of table and processing quality.In: JE Bradshaw and GR Mackay (eds), Potato Genetics. CAB International, Wallingford, UK. pp. 285–315.Google Scholar
  12. Darmo E, and SJ Peloquin. 1989. Parental combining ability and heterosis of 4x families from 4x × 2x crosses in potato. Abstracts of papers presented at the 73rd Annual Meeting PAA, Corvalis, Oregon, July 30–August 3, 1989. pp. 512–513.Google Scholar
  13. Davies HV, and R Viola 1994. Control of sugar balance in potato tubers.In: WR Belknap, ME Vayda, and WD Park (eds), The Molecular and Cellular Biology of the Potato. 2nd ed. CAB International, Wallingford, UK. pp. 67–80.Google Scholar
  14. De Jong H, and GCC Tai. 1991. Evaluation of potato hybrids obtained from tetraploid-diploid crosses. I. Parent-offspring relationships. Plant Breed 107:177–182.CrossRefGoogle Scholar
  15. Domański L, M Domańska, and H Jakuczun. 2000. Ocena potomstw i klonów ziemniaka uzyskanych z krzyzowań interploidalnych (4x-2x). Biul IHAR 216:497–503.Google Scholar
  16. Douches DS, and R Freyre. 1994. Identification of genetic factors influencing chip color in diploid potato (Solanum spp.). Amer Potato J 71:581–590.CrossRefGoogle Scholar
  17. Douches DS, D Maas, K Jastrzebski, and RW Chase. 1996. Assessment of potato breeding progress in the USA over the last century. Crop Sci 36:1544–1552.Google Scholar
  18. Ehlenfeldt MK, AA Boe, and RH Johansen. 1989. Inheritance of reducing sugar accumulation in progeny lines of cold chipping potato clones. Abstracts of papers presented at the 73rd Annual Meeting PAA, Corvalis, Oregon, 30 July-3 August 1989. pp. 519.Google Scholar
  19. Ehlenfeldt MK, DF Lopez-Portilla, AA Boe, and RH Johansen. 1990. Reducing sugar accumulation in progeny families of cold chipping potato clones. Amer Potato J 67:83–91.Google Scholar
  20. Groza H, B Bowen, and J Jiang. 1998. Chip color measurement in the selection for cold chippers. Amer J Potato Res 75:277. (abst)Google Scholar
  21. Groza H, B Bowen, and J Jiang. 1999. Potato breeding results for cold chipping. 14th Triennial Conference of the EAPR, Sorrento, Italy, 2–7 May 1999. pp. 335–336.Google Scholar
  22. Hamernik AJ, and RE Hanneman Jr. 1996. Incorporating wild potato species for the development of cold chipping (2 C) diploids. Amer Potato J 73:359–360. (abst)Google Scholar
  23. Hanneman Jr. RE, 1996. Evaluation of wild species for new sources germplasm that chip directly from cold storage. Amer Potato J 73:360. (abst)Google Scholar
  24. Hutten RCB. 1994. Basic aspects of potato breeding via the diploid level. PhD dissertation, LUW, Wageningen, The Netherlands.Google Scholar
  25. Hyde RB, and C Walkof. 1962. A potato seedling that chips from cold storage without conditioning. Amer Potato J 39:266–270.CrossRefGoogle Scholar
  26. Jakuczun H. 1998. Diploid breeding of potato for quality traits. Proceedings of International Symposium, Breeding Research on Potatoes, Groß Lüsewitz (Rostock), Germany, June 23–26, 1998. pp. 81.Google Scholar
  27. Jakuczun H, K Zgórska, and E Zimnoch-Guzowska. 1995. An investigation of the level of reducing sugars in diploid potatoes before and after cold storage. Potato Res 38:331–338.CrossRefGoogle Scholar
  28. Jaszina IM, and NO Jureva. 1992. Geneticzeskije osnovy selekcii kartofela na prigodnost k pererabotke. Selekcija i Semenovodstwo 1:11–15.Google Scholar
  29. Kala R, H Chudzik, A Dobek, and H Kielczewska. 1996. System analiz statystycznych doswiadczen genetyczno-hodowlanych, wersja 2.0. Katedra Metod Matematycznych i Statystycznych, Akademia Rolnicza w Poznaniu, Polska.Google Scholar
  30. Lauer F, and R Shaw. 1970. A possible genetic source for chipping potatoes from 40 F storage. Amer Potato J 47:275–278.Google Scholar
  31. Loiselle F, GCC Tai, and BR Christie. 1990. Genetic components of chip color evaluated after harvest, cold storage and reconditioning. Amer Potato J 67:633–654.CrossRefGoogle Scholar
  32. Loiselle F, GCC Tai, TR Tarn, and BR Christie. 1989. The use of multivariate analyses to eliminate redundant variables when evaluating potatoes for chip quality. Plant Breed 103:153–162.CrossRefGoogle Scholar
  33. Louwes KM, and AEF Neele. 1987. Selection for chip quality and specific gravity of potato clones: possibilities for early generation selection. Potato Res 30:241–251.CrossRefGoogle Scholar
  34. Love SL, JJ Pavek, A Thompson-Johns, and W Bohl. 1998. Breeding progress for potato chip quality in North American cultivars. Amer J Potato Res 75:27–36.Google Scholar
  35. Lynch DR, LM Kawchuk, R Yada, and JD Armstrong. 2003. Inheritance of the response of fry color to low temperature storage. Amer J Potato Res 80:341–344.Google Scholar
  36. Mackay GR, J Brown J, and CJW Torrance. 1990. The processing potential of tubers of the cultivated potato, Solanum tuberosum L., after storage at low temperature. 1. Fry color. Potato Res 33:211–218.CrossRefGoogle Scholar
  37. Mazza G. 1983a A comparison of methods of analysis for sugars in potato tubers. Can Inst Food Sci Technol J 16:234–236.Google Scholar
  38. Mazza G. 1983b. Correlations between quality parameters of potatoes during growth and long-term storage. Amer Potato J 60:145–159.CrossRefGoogle Scholar
  39. Mendoza HA, and FL Haynes. 1973. Some aspects of breeding and inbreeding in potatoes. Amer Potato J 50:216–222.CrossRefGoogle Scholar
  40. Neele AEF 1991. Parental choice and selection in the early generations of a potato breeding programme. PhD dissertation. LUW, Wageningen, The Netherlands.Google Scholar
  41. Oltmans SM, and RG Novy. 1999. Development of cold chipping potato cultivars by the use of wild species. The 83rd Annual Meeting of the PAA, Somerset, New Jersey, 1–6 August 1999. pp. 25.Google Scholar
  42. Otazu V, and GA Secor. 1980. Clinitest: a simple technique for estimation of reducing sugar content of potatoes. Amer Potato J 57:15–19.CrossRefGoogle Scholar
  43. Pereira A da S, RH Coffin, RY Yada, and V Souza-Machado. 1993. Inheritance patterns of reducing sugars in potato tubers after storage at 12 C and 4 C followed by reconditioning. Amer Potato J 70:71–76.CrossRefGoogle Scholar
  44. Pereira A da S, GCC Tai, RY Yada, RH Coffin, and V Souza-Machado. 1995. Genetic advance for chip color on potatoes. Euphytica 84:133–138.CrossRefGoogle Scholar
  45. Pereira A da S, GCC Tai, RY Yada, TR Tarn, V Souza-Machado, and RH Coffin. 1994. Effect of selection for chip color on some economic traits of potatoes. Plant Breed 113:312–317.CrossRefGoogle Scholar
  46. Pfeffer C, V Grassert, and C Steinbach 1984. Screening method for potato clones with low level of reducing sugars. Archiv für Züchtungsforschung 14:305–311.Google Scholar
  47. Putz B, and L Weber. 1991. Schnellmethode zur Bestimmung der reduzierenden Zucker. Kartoffelbau 42:120–125.Google Scholar
  48. Rodriguez-Saona LE, and RE Wrolstad. 1997. Influence of potato composition on chip color quality. Amer Potato J 74:87–106.CrossRefGoogle Scholar
  49. Sowokinos JR. 2001. Biochemical and molecular control of cold-induced sweetening in potatoes. Amer J Potato Res 78:221–236.Google Scholar
  50. Tai GCC. 1998. Problems and solutions in Canadian potato breeding and breeding research. Proceedings of International Symposium, Breeding Research on Potatoes, Groß Lüsewitz (Rostock), Germany, June 23–26, 1998. pp. 183–191.Google Scholar
  51. Tai GCC, and H de Jong. 1991. Evaluation of potato hybrids obtained from tetraploid-diploid crosses. II. Progeny analysis. Plant Breed 107:183–189.CrossRefGoogle Scholar
  52. Tarn TR, GCC Tai, H de Jong, AM Murphy, and JEA Seabrook. 1993. Breeding potatoes for long-day, temperate climates.In: J Janick (eds), Plant Breeding Reviews, vol. 9. pp. 217–332.Google Scholar
  53. Thiemann H. 1998. Production and use of dihaploid genotypes in a potato breeding programme via meiotic retetraploidisation. Proceedings of International Symposium, Breeding Research on Potatoes, Groß Lüsewitz (Rostock), Germany, 23–26 June 1998. pp. 194–201.Google Scholar
  54. Thill CA, and SJ Peloquin. 1994. Inheritance of potato chip color at the 24-chromosome level. Amer Potato J 71:629–646.CrossRefGoogle Scholar
  55. Thill CA, and SJ Peloquin. 1999. The identification of superior parents having 25% Solanum tarijense and used to develop cold-chipping progeny. 14th Triennial Conference of the EAPR, Sorrento, Italy, 2–7 May 1999. pp. 327–328.Google Scholar
  56. Walkof C. 1970. Chip color of the developing potato tuber. Amer Potato J 47:43–48.CrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Plant Breeding and Acclimatization InstituteMlochów Research CentreMlochówPoland

Personalised recommendations