Advertisement

The Botanical Review

, Volume 3, Issue 1, pp 585–636 | Cite as

The significance of the permanent wilting percentage in studies of plant and soil water relations

  • R. O. Slatyer
Article

Keywords

Soil Moisture Soil Water Soil Water Content Osmotic Pressure Botanical Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahrns, W. 1924. Weitere Untersuchungen über die Abhängigkeit des gegenseitigen Mengenverhältnisses der Kohlenhydrate in Laubblatt vom Wassergehalt. Bot. Arch.5: 234–259.Google Scholar
  2. Aldrich, W. W., Work, R. A., andLewis, M. R. 1935. Pear root concentration in relation to soil-moisture extraction in heavy clay soil. Jour. Agr. Res.50: 975–988.Google Scholar
  3. Alway, F. J. 1913. Studies on the relation of the non-available water of the soil to the hygroscopic coefficient. Neb. Agr. Exp. Sta., Bull. 3.Google Scholar
  4. —,McDole, G. R. andTrumbull, R. S. 1919. Relation of minimum moisture content of subsoil of prairies to hygroscopic coefficient. Bot. Gaz.67: 185–207.CrossRefGoogle Scholar
  5. Anderson, A. B. C., andEdlefsen, N. E., 1942. Volume freezing point relations observed with new dilatometer technique. Soil Sci.54: 221–232.CrossRefGoogle Scholar
  6. Arcichovskij, V., andOssipov, A. 1931. Untersuchungen über die Saugkraft der Pflanzen. V. Die Saugkraft der baumartigen Pflanzen der zentralasiatischen Wüsten, nebst Transpirationmessungen am Saxaul (Arthrophytum haloxylon Litw.). Planta14: 552–565.CrossRefGoogle Scholar
  7. Ayers, A. D., andCampbell, R. B. 1951. Freezing point of water in a soil as related to salt and moisture content of the soil. Soil Sci.72: 201–205.CrossRefGoogle Scholar
  8. —,Wadleigh, C. H., andMagistad, O. C. 1943. The interrelationships of salt concentration and soil moisture content with growth of beans. Jour Amer. Soc. Agron.35: 796–810.Google Scholar
  9. Balls, W. L. 1908. The Cotton Plant in Egypt.Google Scholar
  10. Batchelor, L. D., andReed, H. S. 1923. The seasonal variation of the soil moisture in a walnut grove in relation to the hygroscopic coefficient. Calif. Agr. Exp. Sta., Tech. Paper 10.Google Scholar
  11. Bernstein, L., andPearson, G. A. 1954. Influence of integrated moisture stress achieved by varying the osmotic pressure of culture solutions on growth of tomato and pepper plants. Soil Sci.77: 355–368.CrossRefGoogle Scholar
  12. Bialoglowski, J. 1936. Effect of extent and temperature of roots on transpiration of rooted lemon cuttings. Proc. Amer. Soc. Hort. Sci.34: 96–102.Google Scholar
  13. Billings, W. D. 1938. The structure and development of old field shortleaf pine stands and certain associated physical properties of the soil. Ecol. Monog.8: 437–499.CrossRefGoogle Scholar
  14. Blair, G. Y., Richards, L. A., andCampbell, R. B. 1950. The rate of elongation of sunflower plants and the freezing point of soil moisture in relation to permanent wilt. Soil Sci.70: 431–439.CrossRefGoogle Scholar
  15. Bloodworth, M. E., Page, J. B., andCowley, W. R. 1956. Some applications of the thermoelectric method for measuring water flow rates in plants. Agron. Jour.48: 222–228.Google Scholar
  16. Bodman, G. B., andDay, P. R. 1943. Freezing points of a group of California soils and their extracted clays. Soil Sci.55: 225–246.CrossRefGoogle Scholar
  17. Bordeau, P. F. 1954. Oak seedling ecology determining segregation of species in Piedmont Oak-Hickory Forests. Ecol. Monog.24: 297–320.CrossRefGoogle Scholar
  18. Bouyoucos, G. J. 1936. The dilatometer method as an indirect means of determining the permanent wilting point of soils. Soil Sci.42: 217–223.CrossRefGoogle Scholar
  19. Breazeale, E. L., andMcGeorge, W. T. 1949. A new technic for determining the wilting percentage of soil. Soil Sci.68: 371–374.CrossRefGoogle Scholar
  20. ——. 1953a. Exudation pressure in roots of tomato plants under humid conditions. Soil Sci.75: 293–298.Google Scholar
  21. ——. 1953b. Influence of atmospheric humidity on root growth. Soil Sci.76: 361–365.CrossRefGoogle Scholar
  22. —— andBreazeale, J. F. 1950. Moisture absorption by plants growing in an atmosphere of high humidity. Plant Physiol.25: 413–419.PubMedGoogle Scholar
  23. ———. 1951. Water absorption and transpiration by leaves. Soil Sci.72: 239–244.CrossRefGoogle Scholar
  24. Briggs, L. J. andShantz, H. L. 1911a. A wax seal method for determining the lower limit of available soil moisture. Bot. Gaz.51: 210–219.CrossRefGoogle Scholar
  25. —— 1911b. Application of wilting coefficient determinations in agronomic investigations. Jour. Amer. Soc. Agron.3: 250–260.Google Scholar
  26. - and -. 1912a. The wilting coefficient for different plants and its indirect determination. U. S. Dept Agr., Bur. Plant Ind., Bull. 230.Google Scholar
  27. ——. 1912b. The wilting coefficient and its indirect determination. Bot. Gaz.53: 20–37.CrossRefGoogle Scholar
  28. ——. 1912c. The relative wilting coefficient for different plants. Bot. Gaz.53: 229–235.CrossRefGoogle Scholar
  29. Brown, E. M. 1939. Some effects of temperature on the growth and chemical composition of certain pasture grasses. Missouri Agr. Exp. Sta., Res. Bull. 299.Google Scholar
  30. Brown, W. H. 1912. The relation of evaporation to the water content of the soil at the time of wilting. Plant World15; 121–134.Google Scholar
  31. Burr, W. W. 1914. The storage and use of soil moisture. Neb. Agr. Exp. Sta., Bull. 5.Google Scholar
  32. Caldwell, J. S. 1913. The relation of environmental conditions to the phenomenon of permanent wilting in plants. Physiol. Res.1: 1–56.Google Scholar
  33. Cameron, F. K., andGallagher, F. E. 1908. Moisture content and physical conditions of soils. U. S. Dept. Agr., Bur. Soils, Bull. 50.Google Scholar
  34. Capalungan, A. V., andMurphy, H. F. 1930. Wilting coefficient studies. Jour. Amer. Soc. Agron.22: 842–847.Google Scholar
  35. Chung, C. H. 1935. A study of certain aspects of the phenomenon of transpiration periodicity. Ph.D. Diss., Ohio State Univ.Google Scholar
  36. Clements, H. F., Shigeura, G., andAkamine, E. K. 1952. Factors affecting the growth of sugar cane. Univ. Hawaii Agr. Exp. Sta., Tech. Bull. 18.Google Scholar
  37. Coile, T. S. 1937. Distribution of forest tree roots in North Carolina in Piedmont soils. Jour. Forestry35: 247–257.Google Scholar
  38. Cole, J. S. andMathews O. R. 1939. Subsoil moisture under semiarid conditions. U. S. Dept. Agr., Tech. Bull. 637.Google Scholar
  39. Corey, A. T., andBlake, G. R. 1953. Moisture available to various crops in some New Jersey soils. Proc. Soil Sci. Soc. Amer.17: 314–330.Google Scholar
  40. Crump, W. B. 1913. Notes on the water content and the wilting point. Jour. Ecol.1: 96–100.CrossRefGoogle Scholar
  41. Daubenmire, R. F., andCharter, H. E. 1942. Behaviour of woody desert legumes at the wilting percentage of the soil. Bot. Gaz.103: 762–770.CrossRefGoogle Scholar
  42. Davis, C. H. 1942. Response ofCyperus rotundus L. to five moisture levels. Plant Physiol.17: 311–316.PubMedGoogle Scholar
  43. Dittmer, H. J. 1937. A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale.) Amer. Jour. Bot.24: 417–420.CrossRefGoogle Scholar
  44. Dixon, H. H. 1914. Transpiration and the ascent of sap.Google Scholar
  45. — andAtkins, W. R. G. 1912. Changes in the osmotic pressure of the sap of the developing leaves ofSyringa vulgaris. Notes Bot. School Trinity Col. [Dublin].2: 99–102.Google Scholar
  46. ——. 1916. Osmotic pressures in plants. VI. On the composition of the sap of the conducting tracts of trees at different levels and at different seasons of the year. Sci. Proc. Roy. Dublin Soc.15: 51–62.Google Scholar
  47. Doneen, L. D. 1942. Some soil-moisture conditions in relation to growth and nutrition of the sugar-beet plant. Ann. Amer. Soc. Sugar-Beet Techn. 9.Google Scholar
  48. Döring, B. 1935. Die Temperaturabhängigkeit der Wasseraufnahme und ihre ökologische Bedeutung. Zeits. Bot.28: 305–383.Google Scholar
  49. Duncan, W. H. 1939. Wilting coefficient and wilting percentage of three forest soils of the Duke Forest. Soil Sci.48: 413–420.CrossRefGoogle Scholar
  50. Eaton, F. M. 1927. The water requirement and cell sap concentration of Australian saltbush and wheat as related to the salinity of the soil. Amer. Jour. Bot.14: 212–226.CrossRefGoogle Scholar
  51. —. 1941. Water uptake and root growth as influenced by inequalities in the concentration of the substrate. Plant Physiol.16: 545–564.PubMedGoogle Scholar
  52. —. 1942. Toxicity and accumulation of chloride and sulfate salts in plants. Jour. Agr. Res.64: 357–399.Google Scholar
  53. Edlefsen, N. E. 1934. A new method for measuring the aqueous vapour pressure of soils. Soil Sci.38: 29–35.Google Scholar
  54. Evenari, M., andRichter, R. 1937. Physiological-ecological investigations in the wilderness of Judaea. Jour. Linn. Soc. (Bot.)51: 334–381.Google Scholar
  55. Fowells, H. A., andKirk, B. M. 1945. Availability of soil moisture to Ponderosa pine. Jour. Forestry43: 601–604.Google Scholar
  56. Freeland, R. O. 1937. Effect of transpiration upon the absorption of mineral salts. Amer. Jour. Bot.21: 373–374.CrossRefGoogle Scholar
  57. —. 1948. Photosynthesis in relation to stomatal frequency and distribution. Plant Physiol.23: 595–600.PubMedGoogle Scholar
  58. Furr, J. R., andReeve, J. O. 1945. The range of soil-moisture percentages through which plants undergo permanent wilting in some soils from semi-arid irrigated areas. Jour. Agr. Res.71: 149–170.Google Scholar
  59. - andTaylor, C. A. 1939. Growth of lemon plants in relation to the moisture content of soil. U. S. Dept. Agr., Tech. Bull. 640. 72 pp.Google Scholar
  60. Gail, F. W., andCone, W. H. 1929. Osmotic pressure and pH measurements on cell sap ofPinus ponderosa. Bot. Gaz.88: 437–441.CrossRefGoogle Scholar
  61. Gain, E. 1895. Action de l’eau du sol sur la vegetation. Revue Gen. Bot.7: 15–26, 71–84, 123–138.Google Scholar
  62. Gates, C. T. 1955a. Response of the young tomato plant to a brief period of water shortage. I. The whole plant and its principal parts. Aust. Jour. Biol. Sci.8: 196–214.Google Scholar
  63. —. 1955b. Response of the young tomato plant to a brief period of water shortage. II. The individual leaves. Aust. Jour. Biol Sci.8: 215–230.Google Scholar
  64. Gradmann, H. 1928. Untersuchungen über die Wasserverhältnisse des Bodens als Grundlage des Pflanzenwachstums. Jahrb. Wiss. Bot.69: 1–100.Google Scholar
  65. Gregory, F. G., Milthorpe, F. L., Pearse, H. L., andSpencer, H. J. 1950. Experimental studies of the factors controlling transpiration. Jour. Exp. Bot.1: 15–28.CrossRefGoogle Scholar
  66. Haas, A. R. C. 1936. Growth and water losses in citrus as affected by soil temperature. Calif. Citrograph21: 467, 469.Google Scholar
  67. Haines, F. M. 1952. The absorption of water by leaves in an atmosphere of high humidity. Jour. Exp. Bot.3: 95–98.CrossRefGoogle Scholar
  68. —. 1953. The absorption of water by leaves in fogged air. Jour. Exp. Bot.4: 106–107.CrossRefGoogle Scholar
  69. Haise, H. R., Haas, H. J., andJensen, L. R. 1955. Soil moisture studies of some Great Plains soils. II. Field capacity as related to 1/3 atmosphere percentage and “Minimum Point” as related to 15- and 26- atmosphere percentages. Proc. Soil Sci. Soc. Amer.10: 20–25.Google Scholar
  70. Halma, F. F., andHaas, A. R. C. 1928. Effect of sunlight on sap concentration of citrus leaves. Bot Gaz.86: 102–107.CrossRefGoogle Scholar
  71. Hannig, E. 1912. Untersuchungen über die Verteilung des osmotischen Drucks in der Pflanze in Hinsicht auf die Wasserleitung. Ber. Deut. Bot. Ges.30: 194–204.Google Scholar
  72. Harris, J. A. 1934. The physico-chemical properties of plant saps in relation to phytogeography.Google Scholar
  73. —,Gortner, R. A., Hoffman, W. F., Lawrence, J. V., andValentine, A. T. 1924. The osmotic concentration, specific electrical conductivity, and chloride content of the tissue fluids of the indicator plants of Tooele Valley, Utah. Jour. Agr. Res.27: 893–924.Google Scholar
  74. — andLawrence, I. V. 1916 The cryoscopic constants of expressed vegetable saps as related to local environmental conditions in the Arizona deserts. Physiol. Res.2: 1–49.Google Scholar
  75. Haynes, J. L. 1948. The effect of availability of soil moisture upon vegetative growth and water use in corn. Jour. Amer. Soc. Agron.40: 385–395.Google Scholar
  76. Hayward, H. E., andLong, E. M. 1942. The anatomy of the seedling and roots of the Valencia orange. U. S. Dept. Agr., Tech. Bull. 786.Google Scholar
  77. — andSpurr, W. B. 1943. Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot Gaz.105: 152–164.CrossRefGoogle Scholar
  78. Hedgcock, G. G. 1902. The relation of the water content of the soil to certain plants, principally mesophytes. Bot. Surv. Nebraska Vol.6: 5–79.Google Scholar
  79. Heinrich, R. 1894. Zweiter Bericht über die Verhältnisse und Wirksamkeit der landwirtschaftlichen Versuchsstation zu Rostock.Google Scholar
  80. Henderson, D. W. 1951. Effect of salinity of the moisture content and freezing point depression of soil at permanent wilting of plants. Soil Sci.72: 207–217.CrossRefGoogle Scholar
  81. Hendrickson, A. H., andVeihmeyer, F. J. 1929. Irrigation experiments with peaches in California. Calif. Agr. Exp. Stat., Bull. 479 56 pp.Google Scholar
  82. ——. 1945. Permanent wilting percentages of soils obtained from field and laboratory trials. Plant Physiol.20: 517–539.PubMedGoogle Scholar
  83. Herrick, E. H. 1933. Seasonal and diurnal variations in the osmotic values, and suction tension values in the aerial portions ofAmbrosia trifida. Amer. Jour. Bot.20: 18–34.CrossRefGoogle Scholar
  84. Hibbard, R. P., andHarrington, O. E. 1916. The depression of the freezing point in triturated plant tissue and the magnitude of this depression as related to soil moisture. Physiol. Res.1: 441–454.Google Scholar
  85. Hoagland, D. R. 1944. The inorganic nutrition of plants.Google Scholar
  86. Honert, T. H. van den. 1948. Water transport in plants as a catenary process. Disc. Faraday Soc.3: 146–153.CrossRefGoogle Scholar
  87. Iljin, W. S. 1927. Ueber die Austrocknungsfähigkeit des lebenden Protoplasmas der vegetativen Pflanzenzellen. Jahrb. Wiss. Bot.66: 947–964.Google Scholar
  88. —. 1929. Der Einfluss der Standortsfeuchtigkeit auf den osmotischen Wert bei Pflanzen. Planta7: 45–58.CrossRefGoogle Scholar
  89. Kelley, O. J. 1954. Requirement and availability of soil water. Adv. Agron.6: 67–94.Google Scholar
  90. Kerr, T., andAnderson, D. B. 1944. Osmotic quantities in growing cotton bolls. Plant Physiol.19: 338–349.PubMedGoogle Scholar
  91. Koketsu, R. 1928. Variation of the water content of leaves as related to the wilting of plants. Jour. Dept. Agr. Kyushu Imp. Univ.2: 93–116.Google Scholar
  92. Korstian, C. F. 1924. Density of cell sap in relation to environmental conditions in the Wasatch Mountains of Utah. Jour. Agr. Res.28: 845–909.Google Scholar
  93. Kramer, P. J. 1940. Root resistance as a cause of decreased water absorption by plants at low temperatures. Plant Physiol.15: 63–79.PubMedGoogle Scholar
  94. —. 1942. Species differences with respect to water absorption at low soil temperatures. Amer. Jour. Bot.29: 828–832.CrossRefGoogle Scholar
  95. -. 1949. Plant and soil water relationships.Google Scholar
  96. —. 1950. Effects of wilting on the subsequent intake of water by plants. Amer. Jour. Bot.37: 280–284.CrossRefGoogle Scholar
  97. — andCoile, T. S. 1940. An estimate of the volume of water made available by root extension. Plant Physiol.15: 743–747.PubMedGoogle Scholar
  98. Lane, R. D., andMcComb, A. L. 1948. Wilting and soil moisture depletion by tree seedlings and grass. Jour. Forestry46: 344–349.Google Scholar
  99. Loomis, W. E. 1934. The daily growth of maize. Amer. Jour. Bot.21: 1–6.CrossRefGoogle Scholar
  100. Loustalot, A. J. 1945. Influence of soil moisture conditions on apparent photosynthesis and transpiration of pecan leaves. Jour. Agr. Res.71: 519–532.Google Scholar
  101. Lutman, B. F. 1919. Osmotic pressures in the potato plant at various stages of growth. Amer. Jour. Bot6: 181–202.CrossRefGoogle Scholar
  102. MacDougal, D. T. 1926. The hydrostatic system of trees. Carnegie Inst Wash., Pub. 373.Google Scholar
  103. Magistad, O. C. 1945. Plant growth on saline and alkali soils. Bot. Rev.11: 181–230.Google Scholar
  104. Magness, J. R., Degman, E. S., andFurr, J. R. 1935. Soil moisture and irrigation investigations in eastern apple orchards. U. S. Dept Agr., Tech. Bull. 491.Google Scholar
  105. Marsh, F. L. 1940. Water content and osmotic pressure of certain prairie plants in relation to environment. Neb. Univ. Stud.40: 3–44.Google Scholar
  106. Martin, E. V. 1940. Effect of soil moisture on growth and transpiration inHelianthus annuus. Plant Physiol.15: 449–466.PubMedGoogle Scholar
  107. Maximov, N. A. 1929. The plant in relation to water.Google Scholar
  108. McCool, M. M., andMillar, C. E. 1917. The water content of the soil and the composition and concentration of the soil solution as indicated by the freezing point lowerings of the roots and tops of plants. Soil Sci.3: 113–138.CrossRefGoogle Scholar
  109. Meyer, B. S. 1945. A critical evaluation of the terminology of diffusion phenomena. Plant Physiol.20: 142–164.PubMedGoogle Scholar
  110. —. 1956. The hydrodynamic system. Encyc. Plant Physiol. Vol.3: 596–614.Google Scholar
  111. Miller, E. C. 1938. Plant Physiology.Google Scholar
  112. Mitchell, J. W. 1936. Effect of atmospheric humidity on rate of carbon fixation by plants. Bot. Gaz.98: 87–104.CrossRefGoogle Scholar
  113. Nordhausen, M. 1917. Zur Kenntnis der Saugkraft und der Wasserversorgung transpirierender Sprosse. Jahrb. Wiss. Bot58: 295–335.Google Scholar
  114. —. 1921. Weitere Beiträge zum Saftsteigeproblem. Jahrb. Wiss. Bot60: 307–353.Google Scholar
  115. Nutman, F. J. 1937. Studies of the physiology ofCoffea arabica. II. Stomatal movements in relation to photosynthesis under natural conditions. Ann. Bot. N. S.1: 681–694.Google Scholar
  116. Oppenheimer, H. R. 1950. Geobotanical research in Palestine 1938–1950. Vegetatio Acta Geobotanica.3: 301–320.CrossRefGoogle Scholar
  117. — andElze, D. L. 1941. Irrigation of citrus trees according to physiological indicators. Palestine Jour. Bot. (R)4: 20–46.Google Scholar
  118. — andMendel, K. 1939. Orange leaf transpiration under orchard conditions. I. Soil moisture high. Palestine Jour. Bot. (R)2: 171–250.Google Scholar
  119. Philip, J. R. 1957. The physical principles of soil water movement during the irrigation cycle. Proc. 3rd Int. Cong. Irrigation & Drainage8: 125–154.Google Scholar
  120. Poljakoff, A. 1945. Ecological investigations in Palestine. I. The water balance of some Mediterranean trees. Palestine Jour. Bot. (J)3: 138–150.Google Scholar
  121. Powers, W. L. 1922. Field moisture capacity and wilting point of soils. Soil Sci.14: 159–167.Google Scholar
  122. Rabinowitch, E. I. 1945. Photosynthesis and related processes.Google Scholar
  123. Renner, O. 1911. Experimentelle Beiträge zur Kenntnis der Wasserbewegung. Flora103: 171–247.Google Scholar
  124. Richards, L. A., Campbell, R. B., andHealton, L. H. 1949. Some freezing point-depression measurements on cores of soil in which cotton and sunflower plants were wilted. Proc. Soil Sci. Soc. Amer.14: 47–50.Google Scholar
  125. - andWadleigh, C. H. 1952. Soil water and plant Growth. In Soil physical conditions and plant growth.Google Scholar
  126. — andWeaver, L. R. 1943. Fifteen atmosphere percentage as related to the permanent wilting percentage. Soil Sci.56: 331–339.Google Scholar
  127. ——. 1944. Moisture retention by some irrigated soils as related to soil moisture tension. Jour. Agr. Res.69: 215–235.Google Scholar
  128. Robertson, L. S., andKohnke, H. 1946. The pF at the wilting point of several Indiana soils. Proc Soil Sci. Soc. Amer.11: 50–52.Google Scholar
  129. Russell, M. B., andDanielson, R. E. 1956. Time and depth pattern of water use by corn. Agron. Jour.48: 163–165.Google Scholar
  130. —,Davis, F. E., andBlair, R. A. 1940. The use of tensionmeters for following soil moisture conditions under corn. Jour. Amer. Soc. Agron.32: 922–930.Google Scholar
  131. Sachs, J. 1859. Ueber den Einfluss der chemischen und physikalischen Beschaffenheit des Bodens auf die Transpiration der Pflanzen. Landw. Versuchs-Stat.1: 203–241.Google Scholar
  132. Salter, P. J. 1954. The effects of different water-regimes on the growth of plants under glass. Jour. Hort. Sci.29: 258–268.Google Scholar
  133. Schneider, G. W., andChilders, N. F. 1941. Influence of soil moisture in photosynthesis, respiration and transpiration of apple leaves. Plant Physiol.16: 565–584.PubMedGoogle Scholar
  134. Schofield, R. K., andDa Costa, B. 1935. The determination of the pF at permanent wilting and at the moisture equivalent by the freezing point method. Trans. 3rd Int. Congr. Soil Sci. Vol.1: 6–17.Google Scholar
  135. Scofield, C. S. 1945. The water requirement of alfalfa. U. S. Dept. Agr., Circ. 735.Google Scholar
  136. Shaw, H. R., andSwezey, J. A. 1937. Scientific irrigation management. Hawaiian Sugar Planters’ Assoc., Agr. & Chem. Bull. 52.Google Scholar
  137. Shive, J. W., andLivingston, B. E. 1914. The relation of atmospheric evaporating power to soil moisture content at permanent wilting of plants. Plant World.17: 81–121.Google Scholar
  138. Slatyer, R. O. 1956a. Evapotranspiration in relation to soil moisture. Neth. Jour. Agr. Sci.4: 73–76.Google Scholar
  139. —. 1956b. Absorption of water from atmospheres of different humidity and its transport through plants. Austral. Jour. Biol. Sci.9: 552–558.Google Scholar
  140. —. 1957a. The influence of progressive increases in total soil moisture stress on transpiration, growth and internal water relationships of plants. Austral. Jour. Biol. Sci.10: 320–336.Google Scholar
  141. -. 1957b. Availability of water to plants. UNESCO Symp. Arid Zone Climatol. Vol. 2 [In press].Google Scholar
  142. Spoehr, H. A., andMilner, H. W. 1939. Starch dissolution and amylolytic activity of leaves. Proc. Amer. Phil. Soc.81: 37–78.Google Scholar
  143. Stocking, C. R. 1945. The calculation of tensions inCucurbita pepo. Amer. Jour. Bot.32: 126–134.CrossRefGoogle Scholar
  144. —. 1956. Osmotic pressure or osmotic value. Encyc. Plant Physiol. Vol.2: 57–70.Google Scholar
  145. Stoddart, L. A. 1935. Osmotic pressure and water content of prairie plants. Plant Physiol.10: 661–680.PubMedGoogle Scholar
  146. Swezey, J. A. 1942. Rainfall evaluation as an aid to irrigation interval control. Hawaiian Planters’ Rec.46: 75–100.Google Scholar
  147. Taylor, C. A., Blaney, H. F., andMcLaughlin, W. W. 1934. The wilting range in certain soils and the ultimate wilting point. Trans. Amer. Geophys. Union.15: 436–444.Google Scholar
  148. - andFurr, J. R. 1937. Use of soil moisture and fruit growth records for checking irrigation practices in citrus orchards. U. S. Dept. Agr., Circ. 426.Google Scholar
  149. Thomas, J. E. 1939. An investigation of the problem of salt accumulation on a Mallee soil in the Murray Valley Irrigation Area. Coun. Sci. Ind. Res. [Australia], Bull. 128.Google Scholar
  150. Thomas, M. D. 1921. Aqueous vapour pressure of soils. Soil Sci11: 209–234.CrossRefGoogle Scholar
  151. Thorne, M. D. 1949. Moisture sorption characteristics of some Hawaiian soils. Proc. Soil Sci. Soc. Amer.14: 38–41.Google Scholar
  152. Veihmeyer, F. J. 1956. Soil Moisture. Encyc. Plant Physiol. Vol.3: 64–123.Google Scholar
  153. — andHendrickson, A. H. 1927. Soil moisture conditions in relation to plant growth. Plant Physiol.2: 71–82.PubMedGoogle Scholar
  154. ——. 1928. Soil moisture at permanent wilting of plants. Plant Physiol.3: 350–357.Google Scholar
  155. ——. 1934. Some plant and soil moisture relationships. Bull. Amer. Soil Survey Assoc.15: 76–80.Google Scholar
  156. ——. 1938. Soil moisture as an indication of root distribution in deciduous orchards. Plant Physiol.13: 169–177.PubMedGoogle Scholar
  157. ——. 1949. Methods of measuring field capacity and permanent wilting percentage of soils. Soil Sci.68: 75–94.CrossRefGoogle Scholar
  158. ——. 1950. Soil moisture in relation to plant growth. Ann. Rev. Plant Physiol.1: 285–304.CrossRefGoogle Scholar
  159. ——. 1955. Does transpiration decrease as soil moisture decreases? Trans. Amer. Geophys. Union36: 425–428.Google Scholar
  160. Wadleigh, C. H., andAyers, A. D. 1945. Growth and biochemical composition of bean plants as conditioned by soil moisture tension and salt concentration. Plant Physiol.20: 106–132.PubMedGoogle Scholar
  161. —, andGauch, H. G. 1948. Rate of leaf elongation as affected by the intensity of the total soil moisture stress. Plant Physiol.23: 485–495.PubMedGoogle Scholar
  162. -, -, andMagistad, O. C. 1946. Growth and rubber accumulation in guayule as conditioned by soil salinity and irrigation regime. U. S. Dept. Agr., Tech. Bull. 925.Google Scholar
  163. ——, andStrong, D. C. 1947. Root penetration and moisture extraction in saline soil by crop plants. Soil Sci.63: 341–349.CrossRefGoogle Scholar
  164. Wadsworth, H. A. 1929. Soil moisture characteristics. Pineapple News3: 151–157.Google Scholar
  165. —. 1934. Soil moisture and the sugar cane plant. Hawaiian Plant. Record38: 111–119.Google Scholar
  166. Walter, H. 1929. Plasmaguellung und Assimilation. Protoplasma6: 113–156.CrossRefGoogle Scholar
  167. -. 1931. Die Hydratur der Pflanze.Google Scholar
  168. Weatherley, P. E., andSlatyer, R. O. 1957. Relationship between relative turgidity and diffusion pressure deficit in leaves. Nature179: 1085–1086.CrossRefGoogle Scholar
  169. Weaver, J. E. 1926. Root development of field crops.Google Scholar
  170. - andBruner, W. E. 1927. Root development of vegetable crops.Google Scholar
  171. Williams, R. F., andMarshall, T. J. 1942. Determination of the permanent wilting percentage of soils. Jour. Austral. Inst. Agr. Sci.8: 109–111.Google Scholar
  172. Wilson, C. C. 1948. Diurnal fluctuations in length of tomato stem. Plant Physiol.23: 156–157.PubMedGoogle Scholar
  173. Wright, K. E. 1939. Transpiration and the absorption of mineral salts. Plant Physiol.14: 171–174.PubMedGoogle Scholar
  174. Yocum, L. E.. 1935. The stomata and transpiration of oaks. Plant Physiol.10: 795–801.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1937

Authors and Affiliations

  • R. O. Slatyer
    • 1
  1. 1.Division of Land Research and Regional SurveyC.S.I.R.O.CanberraAustralia

Personalised recommendations