Advertisement

Photoinduced electron transfer and its applications—Study on photochemical solar energy storage and polymeric photorefractive materials

  • Xue-Song Wang
  • Bao-Wen Zhang
  • Guang-Qian He
  • Yi Cao
  • Hong Gao
  • Shuo-Xing Dou
  • Jia-Sen Zhang
  • Pei-Xian Ye
Article
  • 75 Downloads

Abstract

The applications of photoinduced electron transfer, one in solar energy storage and the other in polymeric photorefractive materials are reported. In the former case, two new kinds of polymers containing norbornadiene and carbazole pendants were synthesized. The photoisomerization of norbornadiene pendants were achieved by irradiation with the light above the wavelength of 350 nm and a photoinduced electron transfer mechanism was proposed via fluorescence quenching, chemically induced dynamic nuclear polarization and thermodynamic discussion. In the latter case, a fast photorefractive response time of a polymer film composed of poly(N-vinylcarbazole), 2,4,7-trinitro-9-fluorenone and 4-(dicyanovinyl)-N,N-diethylaniline was observed by four-wave mixing diffraction measurement and the function of photoinduced electron transfer process in this photorefractive polymer film was also illustrated.

Keywords

Photoinduced electron transfer norbornadiene pendants carbazole pendants valence isomerization photorefractive effect 

References

  1. 1.
    Alfano R R (ed.) 1982Biological events probed by ultrafast laser spectroscopy (New York: Academic Press) chap 1–5Google Scholar
  2. 2.
    Joshi N V 1990Optical engineering vol. 25: Photoconductivity: Art, Science and Technology (New York: Marcel Dekker)Google Scholar
  3. 3.
    Moerner W E and Silence S M 1994Chem. Rev. 94 127CrossRefGoogle Scholar
  4. 4.
    Jones G II, Schqarz W and Malba V 1982J. Phys. Chem. 86 2286CrossRefGoogle Scholar
  5. 5.
    Bolton J R 1978Science 202 705CrossRefGoogle Scholar
  6. 6.
    O’Regan B and Gratzel M 1991Nature (London) 353 737CrossRefGoogle Scholar
  7. 7.
    Hautala R R, King R B and Kutal C (eds) 1979Solar energy: Chemical conversion and storage (Clifton NJ: Humana Press) p. 333Google Scholar
  8. 8.
    Hautala R R, Little J and Sweet E 1977Sol. Energy 19 503CrossRefGoogle Scholar
  9. 9.
    Nishikubo T, Shimokawa T and Sahara A 1989Macromolecules 22 8CrossRefGoogle Scholar
  10. 10.
    Ducharme S, Scott J C, Twieg R J and Moerner W E 1991Phys. Rev. Lett. 66 1846CrossRefGoogle Scholar
  11. 11.
    Meerholz K, Volodin B L, Kippelen S B and Peyghambarian N 1994Nature (London) 371 497CrossRefGoogle Scholar
  12. 12.
    Silence S M, Scott J C, Hache F, Ginsburg E J, Jenkner P K, Miller R D, Twieg R J and Moerner W E 1993J. Opt. Soc. Am. B(10) 2306Google Scholar
  13. 13.
    Kaptein R 1971Chem. Commun. 732Google Scholar
  14. 14.
    Schwarz W, Dangel K M, Jones G II and Bargon J 1982J. Am. Chem. Soc. 104 5686CrossRefGoogle Scholar
  15. 15.
    Relm D and Weller A 1970Israel J. Chem. 98 259Google Scholar
  16. 16.
    Weiser G 1972J. Appl. Phys. 43 5028CrossRefGoogle Scholar
  17. 17.
    Gill W D 1972J. Appl. Phys. 43 5033CrossRefGoogle Scholar
  18. 18.
    Donckers M, Silence S M, Walsh C A, Hache F, Burland D M, Moerner W E and Twieg R J 1993Opt. Lett. 18 1044CrossRefGoogle Scholar
  19. 19.
    Turro N J 1978Modern molecular photochemistry (Menlo Park, CA: Benjamin Cummings) p. 247Google Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • Xue-Song Wang
    • 1
  • Bao-Wen Zhang
    • 1
  • Guang-Qian He
    • 1
  • Yi Cao
    • 1
  • Hong Gao
    • 2
  • Shuo-Xing Dou
    • 2
  • Jia-Sen Zhang
    • 2
  • Pei-Xian Ye
    • 2
  1. 1.Institute of Photographic ChemistryThe Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Physicsthe Chinese Academy of SciencesBeijingChina

Personalised recommendations