The Botanical Review

, Volume 16, Issue 8, pp 399–447 | Cite as

Leaf xeromorphy as related to physiological and structural influences

  • Lora Mangum Shields


Osmotic Pressure Root Hair Botanical Review Drought Resistance Shade Leave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Alekseev, A. M. Influence of water content of leaves upon photosynthesis. Bot. Zhur. SSSR20: 227–241. 1935.Google Scholar
  2. 2.
    Alexandrov, W. andAlexandrova, O. Über das mobile Bleichgewicht in der Blattstruktur. Beih. Bot. Cent. 1 Abt.44: 267–292. 1927.Google Scholar
  3. 3.
    Alexandrov, W. G. Beiträge zur Kenntnis des Zuckerrübenwurzel. Planta7: 124–132. 1929.CrossRefGoogle Scholar
  4. 4.
    Artschwager, E. Morphology of the vegetative organs of sugar cane. Jour. Agr. Res.60: 503–550. 1940.Google Scholar
  5. 5.
    Ashby, E. Transpiratory organs ofLarrea tridentata and their ecological significance. Ecology13: 182–188. 1932.CrossRefGoogle Scholar
  6. 6.
    Avery, G. S., Jr. Structural responses to the practice of topping tobacco plants: A study of cell size, cell number, leaf size, and veinage of leaves at different levels on the stalk. Bot. Gaz.96: 314–329. 1934.CrossRefGoogle Scholar
  7. 7.
    Bailey, I. W. andSinnott, E. W. The climatic distribution of certain types of angiosperm leaves. Am. Jour. Bot.3: 24–39. 1916.CrossRefGoogle Scholar
  8. 8.
    Baumert, K. Experimentelle Untersuchungen über Lichtschuzeinrichtungen an grünen Blättern. Beitr. Biol. Pflanzen9: 83–162. 1907.Google Scholar
  9. 9.
    Bentley, J. andWolf, F. A. Glandular leaf hairs of oriental tobacco. Bull. Torrey Bot. Club72: 345–360. 1945.CrossRefGoogle Scholar
  10. 10.
    Bergen, Y. Transpiration of sun leaves and shade leaves ofOlea europaea and other broad-leaved evergreens. Bot. Gaz.38: 285–296. 1904.CrossRefGoogle Scholar
  11. 11.
    Biale, J. B. Periodicity in transpiration of lemon cuttings under constant environmental conditions. Proc. Am. Soc. Hort. Sci.38: 70–74. 1941.Google Scholar
  12. 12.
    Bindloss, E. A. A developmental analysis of cell length as related to stem size. Am. Jour. Bot.29: 179–188. 1942.CrossRefGoogle Scholar
  13. 13.
    Blackman, H. V. The compound interest law and plant growth. Ann. Bot.33: 353–360. 1919.Google Scholar
  14. 14.
    Boon-Long, T. S. Transpiration as influenced by osmotic concentration and cell permeability. Am. Jour. Bot.28: 333–343. 1941.CrossRefGoogle Scholar
  15. 15.
    Brenner, M. In Burgerstein, Die Transpiration der Pflanzen, 1904, p. 210.Google Scholar
  16. 16.
    Brewig, A. Ein Beitrag zur Analyse des Transpirations-widerstandes. Planta20: 734–791. 1933.CrossRefGoogle Scholar
  17. 17.
    Brierley, W. G. Absorption of water by the foliage of some common fruit species. Proc. Soc. Hort. Sci.32: 277–283. 1935.Google Scholar
  18. 18.
    Briggs, L. J. andShantz, H. L. The relative wilting coefficients for different plants. Bot. Gaz.53: 229–235. 1912.CrossRefGoogle Scholar
  19. 19.
    ——. The water requirement of plants. II. A review of the literature. U. S. Dept. Agr. Bur. Pl. Ind., Bull.285: 1–96. 1913.Google Scholar
  20. 20.
    ——. Relative water requirement of plants. Jour. Agr. Res.3: 1–63. 1914.Google Scholar
  21. 21.
    Briggs, L. J. Hourly transpiration rate on clear days as determined by cyclic environmental factors. Jour. Agr. Res.5: 583–650. 1916.Google Scholar
  22. 22.
    Bright, D. N. E. The effects of exposure upon the structure of certain heath plants. Jour. Ecol.16: 323–365. 1928.CrossRefGoogle Scholar
  23. 23.
    Brown, H. T. andEscombe, F. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Phil. Trans. Royal Soc. (London), B,193: 223–291. 1900.CrossRefGoogle Scholar
  24. 24.
    Broyer, T. C. andHoagland, D. R. Metabolic activities of roots and their bearing on the relation of upward movement of salts and water in plants. Am. Jour. Bot.30: 261–273. 1943.CrossRefGoogle Scholar
  25. 25.
    Cain, S. A. andPotzger, J. E. A comparison of leaf tissues ofGaylussacia baccata (Wang.) C. Koch andVaccinium vacillons Kalm. grown under different conditions. Am. Mid. Nat.14: 97–112. 1933.CrossRefGoogle Scholar
  26. 26.
    Carroll, J. C. andWelton, F. A. Daily periodicity of stomata in certain species of turf grasses. Bot. Gaz.99: 420–423. 1937.CrossRefGoogle Scholar
  27. 27.
    Chancerl, L. Le rôle du calcium dans la végétation forestière. Rev. Gen. Bot.25: 83–89. 1914.Google Scholar
  28. 28.
    Clements, E. S. The relation of leaf structure to physical factors. Trans. Am. Micr. Soc.26: 19–102. 1905.CrossRefGoogle Scholar
  29. 29.
    Clements, F. E. andMartin, E. V. Effect of soil temperature on transpiration inHelianthus annuus. Plant Physiol.9: 619–630. 1934.PubMedGoogle Scholar
  30. 30.
    Clum, H. H. The effect of transpiration and environmental factors on leaf temperatures. I. Transpiration. Am. Jour. Bot.13: 194–216. 1926a.CrossRefGoogle Scholar
  31. 31.
    —. The effect of transpiration and environmental factors on leaf temperatures. II. Light intensity and the relation of transpiration on the thermal death point. Am. Tour. Bot.13: 217–230. 1926.CrossRefGoogle Scholar
  32. 32.
    Combes, R. Détermination des intensités lumineuses optima. Ann. Sci. Nat. IX. Bot.11: 75. 1910.Google Scholar
  33. 33.
    Conti, A. Forma e sviluppo del palizzata in rapporto alla funzione: ricerche anatomiche. Ateneo Parmense6: 561–574. 1934.Google Scholar
  34. 34.
    Coulter, J. M.,et al. A textbook of botany for colleges and universities. Vol. 3, Ecology. 471 pp. 1931.Google Scholar
  35. 35.
    Coville, F. V. Botany of the Death Valley expedition. Contr. U. S. Nat. Herb.4: 53. 1893.Google Scholar
  36. 36.
    Cowart, F. F. Apple leaf structure as related to position of the leaf upon the shoot and to type of growth. Proc. Am. Soc. Hort. Sci.33: 145–148. 1936.Google Scholar
  37. 37.
    Curtis, O. F. Leaf temperatures and the cooling of leaves by radiation. Plant Physiol.11: 343–364. 1936.PubMedGoogle Scholar
  38. 38.
    D’Almeida, J. F. R. andDesai, J. L. A contribution to the study of the ecological foliar anatomy of Indian plants. Jour. Univ. Bombay16: 1–58. 1942.Google Scholar
  39. 39.
    Darwin, F. The effect of light on the transpiration of leaves. Proc. Royal Soc. London, B,87: 281–299. 1914.Google Scholar
  40. 40.
    Dastur, R. H. The relation between water content and photosynthesis. Ann. Bot.39: 769–786. 1925.Google Scholar
  41. 41.
    — andBuhariwalla, N. A. Chlorophyll from tropical plants and its quantitative determination by means of the spectrograph. Ann. Bot.42: 949–964. 1928.Google Scholar
  42. 42.
    Davidson, O. W. andShive, J. W. The influence of the hydrogenion concentration of the culture solution upon the absorption and assimilation of nitrate and ammonium nitrogen by peach trees grown in sand cultures. Soil Sci.37: 357–385. 1934.CrossRefGoogle Scholar
  43. 43.
    ——. Determination of the nitrogenous fractions in vegetative tissue of the peach. Plant Physiol.10: 73–92. 1935.PubMedGoogle Scholar
  44. 44.
    Delf, E. Transpiration in succulent plants. Ann. Bot.26: 409–441. 1912.Google Scholar
  45. 45.
    Delisle, A. L. Morphogenetic studies in the development of successive leaves inAster, with respect to relative growth, cellular differentiation and auxin relationships. Am. Jour. Bot.25: 420–430. 1938.CrossRefGoogle Scholar
  46. 46.
    Desai, M. C. Effect of certain nutrient deficiencies on stomatal behavior. Plant Physiol.12: 253–283. 1937.PubMedCrossRefGoogle Scholar
  47. 47.
    Dittmer, H. J. A comparative study of the number and length of roots produced in nineteen angiosperm species. Bot. Gaz.109: 354–357. 1948.CrossRefGoogle Scholar
  48. 48.
    Doyle, J. andClinch, P. The dehydration rates of conifer leaves in relation to pentosan content. Sci. Proc. Royal Dublin Soc.18: 265–275. 1926.Google Scholar
  49. 49.
    Elliot, J. H. Growth and differentiation in the vascular system during leaf development in the dicotyledon. Proc. Leeds Phil. & Lit. Soc.2: 440–450. 1933.Google Scholar
  50. 50.
    Emerson, F. W. Basic botany. 373 pp. 1947.Google Scholar
  51. 51.
    Evans, M. The physiology of succulent plants. Biol.Rev. & Biol. Proc. Cambridge Phil. Soc.7: 181–211. 1932.Google Scholar
  52. 52.
    Ewart, A. J. The influence of correlation uponthe size of leaves. Ann. Bot.20: 79–82. 1906.Google Scholar
  53. 53.
    Farr, C. H. Studies on the growth of root hairs in solutions. Am. Jour. Bot.14: 446–456, 497–515, 553–564. 1927.CrossRefGoogle Scholar
  54. 54.
    Fitting, H. Die Wasserversorgung und die osmotischen Druckverhältnisse der Wüstenpflanzen. Zeits. Bot.3: 209–275. 1911.Google Scholar
  55. 55.
    Folsom, D. The influence of certain environmental conditions, especially water supply, upon form and structure inRanunculus. Physiol. Res.2: 209–272. 1918.Google Scholar
  56. 56.
    Frank, B. Ueber die Veränderung der Lage der Chlorophyllkörner und des Protoplasmas in der Zelle, und deren innere und äussere Ursachen. Jahrb. Wiss. Bot.8: 216–303. 1872. [Quoted by Haberlandt, 1928.]Google Scholar
  57. 57.
    Freeland, R. O. Effect of transpiration upon the absorption and distribution of mineral salts in plants. Am. Jour. Bot.23: 353–362. 1936.CrossRefGoogle Scholar
  58. 58.
    Fuller, G. D. andBakke, A. L. Raunkiaer’s “life forms”, “Leafsize classes”, and statistical methods. Plant World21: 25–37. 1918.Google Scholar
  59. 59.
    Gail, F. W. Osmotic pressure of cell sap and its possible relation to winter killing and leaf fall. Bot. Gaz.81: 434–445. 1926.CrossRefGoogle Scholar
  60. 60.
    Gates, F. C. Winter as a factor in the xerophily of certain evergreen ericads. Bot. Gaz.57: 445–489. 1914.CrossRefGoogle Scholar
  61. 61.
    —. Relation between evaporation and plant succession. Am. Jour. Bot.4: 161–178. 1917.CrossRefGoogle Scholar
  62. 62.
    —. Evaporation in vegetation at different heights. Am. Jour. Bot.13: 167–178. 1926.CrossRefGoogle Scholar
  63. 63.
    Geneau de Lamarlière. Recherches physiologiques sur les feuilles développées à l’ombre et au soleil. Rev. Gén. Bot.4: 481–496, 529–544. 1892.Google Scholar
  64. 64.
    Gier, L. J. andBurress, R. M. Anatomy ofTaraxacum officinale “Weber”. Trans. Kans. Acad. Sci.45: 94–97. 1942.CrossRefGoogle Scholar
  65. 65.
    Goebel. Organographie. I. 1898.Google Scholar
  66. 66.
    Goebeler, E. Die Schutzvorrichtungen am Stammscheitel der Farne. Flora69: 487. 1886.Google Scholar
  67. 67.
    Graner, E. A. Genetics ofManihot. I. Inheritance of leaf form and color of the outer root skin inManihot utilissima Pohl. Bragantia2: 13–22. 1942.Google Scholar
  68. 68.
    Gray, J. andPeirce, G. J. The influence of light upon the action of stomata and its relation to the transpiration of certain grains. Am. Jour. Bot.6: 131–155. 1919.CrossRefGoogle Scholar
  69. 69.
    Greathouse, G. A. Conductivity measurements of plant sap. Plant Physiol.13: 553–569. 1938.PubMedGoogle Scholar
  70. 70.
    Griffin, A. Some notes on anthocyanin formation in leaves with cut veins. Butler Univ. Bot. Stud.3: 139–140. 1935.Google Scholar
  71. 71.
    Groom, P. Remarks on the ecology of Coniferae. Ann. Bot.24: 241–269. 1910.Google Scholar
  72. 72.
    Grossenbacher, K. A. Autonomic cycle of rate of exudation of plants. Am. Jour. Bot.26: 107–109. 1939.CrossRefGoogle Scholar
  73. 73.
    Guthrie, J. D. Effect of environmental conditions on the chloroplast pigments. Am. Jour. Bot.16: 716–746. 1929.CrossRefGoogle Scholar
  74. 74.
    Haberlandt, G. Physiological plant anatomy. 4th ed.777 pp. 1928.Google Scholar
  75. 75.
    Halma, F. F. Quantitative differences in palisade tissue of citrus leaves. Bot. Gaz.87: 319–324. 1929.CrossRefGoogle Scholar
  76. 76.
    Hamner, K. C. Effects of nitrogen supply on rates of photosynthesis and respiration in plants. Bot. Gaz.97: 744–764. 1936.CrossRefGoogle Scholar
  77. 77.
    Hanson, H. C. Leaf structure as related to environment. Am. Tour. Bot.4: 533–560. 1917.CrossRefGoogle Scholar
  78. 78.
    Hansteen-Cranner, B. Über das Verhalten der Kulturpflanzen zu den Bodensalzen. Jahrb. Wiss. Bot.53: 536–599. 1914.Google Scholar
  79. 79.
    Hare, C. L. The arborescentSenecios of Kilimanjaro: A study in ecological anatomy. Trans. Royal Soc. Edinburgh60: 335–371. 1941.Google Scholar
  80. 80.
    Hasselbring, H. The effect of shading on the transpiration and assimilation of the tobacco plant in Cuba. Bot. Gaz.57: 257–286. 1914.CrossRefGoogle Scholar
  81. 81.
    Hellriegel, F. Beitrage zu den Naturwiss. Grundlagen des Ackerbaus. 1883.Google Scholar
  82. 82.
    Hercik, F. O Závislosti mezi povrochovým napctím stavy a plochou listu. Biol. Listy13: 390–399. 1927.Google Scholar
  83. 83.
    Herrick, E. M. Seasonal and diurnal variations in the osmotic values and suction tension values in the aerial portions ofAmbrosia trifida L. Am. Jour. Bot.20: 18–34. 1933.CrossRefGoogle Scholar
  84. 84.
    Hewitt, S. P. andCurtis, O. F. The effect of temperature on loss of dry matter and carbohydrate from leaves by respiration and translocation. Am. Jour. Bot.35: 746–755. 1948.CrossRefGoogle Scholar
  85. 85.
    Hill, T. G. Observations on the osmotic properties of certain salt marsh plants. New Phyt.7: 133–142. 1908.CrossRefGoogle Scholar
  86. 86.
    Hiramatu, K. The relation of CO2 assimilation activity to the age of evergreen leaves. Ecol. Rev.5: 25–32. 1939.Google Scholar
  87. 87.
    Hoagland, D. R. andBroyer, T. C. General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol.11: 471–507. 1936.PubMedGoogle Scholar
  88. 88.
    Hohn, Karl. Die Bcdeutung der Wurzelhaare für die Wasseraufnahme der Pflanzen. Zeit. Bot.27: 529–564. 1934.Google Scholar
  89. 89.
    Holttum, R. E. On periodic leaf-change and flowering of trees in Singapore. Gardens’ Bull. Straits Settlements5: 173–206. 1931.Google Scholar
  90. 90.
    Hormann, E. Der Ausdruck optimalen Lichtgenusses im Blattbau der Pflanze. Bot. Archiv18: 288–296. 1927.Google Scholar
  91. 91.
    Iljin, V. S. Die Regulierung der Spaltöffnungen im Zusammenhang mit der Veränderung des osmotischen Druckes. Beih. Bot. Cent., Abt. 1,32: 15–35. 1914.Google Scholar
  92. 92.
    —. Relation of transpiration to assimilation in steppe plants. Jour. Ecol.4: 65–82. 1916.CrossRefGoogle Scholar
  93. 93.
    —. Wirkung der Kationen von Salzen auf den Zerfall und die Bildung von Stärke in der Pflanze. Biochem. Zeits.132: 492–510. 1922.Google Scholar
  94. 94.
    —,et al. Osmotic pressure in roots and in leaves in relation to habitat moisture. Jour. Ecol.4: 160–173. 1916.CrossRefGoogle Scholar
  95. 95.
    Imamura, S. I. Über die Dorsiventralität der unifazialen Blätter vonIris japonica Thunb. und ihre Beeinflussbarkeit durch die Schwerkraft. Mem. Coll. Sci. Kyoto Imp. Univ., B,6: 271–331. 1931.Google Scholar
  96. 96.
    Isanogle, I. T. Effects of controlled shading upon the development of leaf structure in two deciduous tree species. Ecology25: 404–413. 1944.CrossRefGoogle Scholar
  97. 97.
    Iwanoff, L. Zur Methodik der Transpirationsbestimmung am Standort. Ber. Deut. Bot. Ges.46: 306–310. 1928.Google Scholar
  98. 98.
    James, W. O. Studies of the physiological importance of the mineral elements in plants. I. The relation of potassium to the properties and functions of the leaf. Ann. Bot.44: 173–198. 1930.Google Scholar
  99. 99.
    Jost, L. Lectures on plant physiology. English translation by Gibson. 564 pp. 1907.Google Scholar
  100. 100.
    Kerner, A. andOliver, F. W. The natural history of plants. Vol.1: 313.Google Scholar
  101. 101.
    Kisselew, N. M. Über die Transpiration welkender Sonnen- und Schattenblätter. Beih. Bot. Cent. 1 Abt.44: 181–217. 1927.Google Scholar
  102. 102.
    Kisser, J. Untersuchungen ueber den Einfluss der Nahrsalze auf die Wasserabgabe, Wasseraufnahme, relative Spross- und Wurzelmasse und die Blattstruktur. I. Teil. II. Teil: Veränderungen der Blattstruktur unter dem Einflüsse de Nährsalze. Planta3: 562–596. 1927.CrossRefGoogle Scholar
  103. 103.
    Kochanovsky, L. Some investigations on the transpiration of plants under the conditions of a sub-alpine zone. Tour. Soc. Bot. Russ.9: 239–250. 1926.Google Scholar
  104. 104.
    Kokin, A. The influence of daylight and number of leaves on the sugar content of beet roots. Phys. Untersuch. Zuckerrube. Erste Artikelserie. Ukrainisches Inst. Agnew. Bot. Sect. Pflanzenphysiol. Charkiw.1: 122–140. 1930.Google Scholar
  105. 105.
    Korstian, C. F. Density of cell sap in relation to environmental conditions in the Wasatch Mountains of Utah. Jour. Agr. Res.28: 845–907. 1924.Google Scholar
  106. 106.
    Kramer, P. J. The absorption of water by root systems of plants. Am. Jour. Bot.19: 148–164. 1932.CrossRefGoogle Scholar
  107. 107.
    —. The intake of water through dead root systems and its relation to the problem of absorption by transpiring plants. Am. Jour. Bot.20: 481–493. 1933.CrossRefGoogle Scholar
  108. 108.
    —. The relation between rate of transpiration and rate of absorption of water in plants. Am. Jour. Bot.24: 10–15. 1937.CrossRefGoogle Scholar
  109. 109.
    —. Root resistance as a cause of the absorption lag. Am. Jour. Bot.25: 110–113. 1938.CrossRefGoogle Scholar
  110. 110.
    Krause, H. Beitrage zur Kenntnis der Wasseraufnahme durch oberirdische Pflanzenorgane. Ost. Bot. Zeits.84: 241–270. 1935.CrossRefGoogle Scholar
  111. 111.
    Kraus, E. J. andKraybill, H. R. Vegetation and reproduction with special reference to the tomato. Or. Agr. Exp. Sta., Bull. 149. 1918.Google Scholar
  112. 112.
    Kummler, A. Ueber die Funktion der Spaltöffnungen weissbunter Blätter. Jahrb. Wiss. Bot.61: 610–670. 1922.Google Scholar
  113. 113.
    Kurz, H. Hydrogen ion concentration in relation to ecological factors. Bot. Gaz.76: 1–29. 1923.CrossRefGoogle Scholar
  114. 114.
    Leclerc du Sablon, M. Sur les causes du dégagement et de la rétention du vapeur d’eau chez les plantes. Rev. Gén. Bot.25: 49–63, 104–122. 1913.Google Scholar
  115. 115.
    Livingston, B. E. Light intensity and transpiration. Bot. Gaz.52: 417–438. 1911a.CrossRefGoogle Scholar
  116. 116.
    —. The relation of the osmotic pressure of the cell sap in plants to arid habitats. Plant World14: 153–164. 1916.Google Scholar
  117. 117.
    — andBrown, W. H. Relation of the daily march of transpiration to variations in water content of foliage leaves. Bot. Gaz.53: 309–330. 1912.CrossRefGoogle Scholar
  118. 118.
    Lloyd, F. E. The physiology of stomata. Carnegie Inst. Wash., Publ.82: 1–142. 1908.Google Scholar
  119. 119.
    —. The relation of transpiration and stomatal movement to water content of the leaves inFouquieria splendens. Plant World15: 1–4. 1912.Google Scholar
  120. 120.
    Loehwing, W. F. Calcium, potassium and iron balance in certain crop plants in relation to their metabolism. Plant Physiol.3: 261–275. 1928.PubMedGoogle Scholar
  121. 121.
    Lothelier, A. Recherches sur les plantes à piquants. Revu Gen. Bot.5: 480–483. 1893.Google Scholar
  122. 122.
    Lubimenko, W. Production de la substance sèche et de la chlorophylle chez les végétaux supérieurs aux differentes intensites lumineuses. Ann. Sci. Nat. IX Bot.7: 321–415. 1908.Google Scholar
  123. 123.
    Lukaszewicz, J. Über das Vorkommen von Kalium in manchen pflanzlichen Gebilden. Bull. Acad. Polonaise Sci. Let., B,1926:559–577. 1926.Google Scholar
  124. 124.
    Lundegardh, H. Die Nahrstoffaufnahme der Pflanze. 1932.Google Scholar
  125. 125.
    MacDougal, D. T. The water balance of desert plants. Ann. Bot.26: 71–93. 1912.Google Scholar
  126. 126.
    —. The reactions of plants to new habitats. Ecology2: 1–20. 1921.CrossRefGoogle Scholar
  127. 127.
    et al. Echinocactus. Physiol. Res.1: 289–325. 1913.Google Scholar
  128. 128.
    — andSpoehr, H. A. The origination of xerophytism. Plant World21: 245–249. 1918.Google Scholar
  129. 129.
    et al. Basis of succulence in plants. Bot. Gaz.67: 405–416. 1919.CrossRefGoogle Scholar
  130. 130.
    McDougall, W. B. andPenfound, W. T. Anatomy of deciduous forest plants. Ecology9: 349–353. 1928.CrossRefGoogle Scholar
  131. 131.
    Mallery, T. D. Changes in the osmotic value of the expressed sap of leaves and small twigs ofLarrea tridentata as influenced by environmental conditions. Ecol. Mon.5: 1–35. 1935.CrossRefGoogle Scholar
  132. 132.
    Marsh, F. L. Water content and osmotic pressure of sun and shade leaves of certain woody prairie plants. Bot. Gaz.102: 812–814. 1941.CrossRefGoogle Scholar
  133. 133.
    Marthaler, H. Die Stickstoffernährung der Hockmoorpflanzen. Augleich ein Beitrag zum Xerophytenproblem. Jahrb. Wiss. Bot.88: 723–758. 1939.Google Scholar
  134. 134.
    Martin, E. V. Effect of solar radiation on transpiration ofHelianthus annuus. Plant Physiol.10: 341–354. 1935.PubMedGoogle Scholar
  135. 135.
    Mason, T. G. andMaskell, E. J. Further studies on transport in the cotton plant. II. An autogenetic study of concentrations and vertical gradients. Ann. Bot.48: 119–141. 1934.Google Scholar
  136. 136.
    Maximov, N. A. andKrasnosselsky-Maximov, T. A. Wilting of plants in its connection with drought resistance. Jour. Ecol.12: 95–110. 1924.CrossRefGoogle Scholar
  137. 137.
    -Maximov, N. A.. The plant in relation to water. A study of the physiological basis of drought resistance. 451 pp. 1929. [English trans. by Yapp].Google Scholar
  138. 138.
    —. The physiological significance of the xeromorphic structure of plants. Jour. Ecol.19: 272–282. 1931.CrossRefGoogle Scholar
  139. 139.
    Mendel, K. Orange leaf transpiration under orchard conditions. II. Soil moisture content decreasing. Palestine Jour. Bot., R,5: 59–85. 1945.Google Scholar
  140. 140.
    Mer, C. L. The factors determining the resistance to movement of water in the leaf. Ann. Bot.4: 397–401. 1940.Google Scholar
  141. 141.
    Meyer, B. S. The measurement of the rate of water vapor loss from leaves under standard conditions. Am. Jour. Bot.14: 582–591. 1927.CrossRefGoogle Scholar
  142. 142.
    —. Seasonal variations in the physical and chemical properties of the leaves of the pitch pine, with especial reference to cold resistance. Am. Jour. Bot.15: 449–472. 1928.CrossRefGoogle Scholar
  143. 143.
    —. Effects of deficiencies of certain mineral elements on the development ofTaraxacum kok-saghyz. Am. Jour. Bot.32: 523–528. 1945.CrossRefGoogle Scholar
  144. 144.
    Meyer, W. Bau und Beanspruchung des Leitungssystems einiger krautiger Pflanzen. Jahrb. Wiss. Bot.79: 385–405. 1934.Google Scholar
  145. 145.
    Miller, E. S. andJohnson, J. The relation between leaf tissue pigment concentration and yield in corn. Jour. Am. Soc. Agron.30: 941–946. 1938.Google Scholar
  146. 146.
    Mittmeyer, G. Studien über die Abhängigkeit der Transpiration verschiedener Blattypen vom Licht und Sättigungsderfizit der Luft. Jahrb. Wiss. Bot.74: 364–428. 1931.Google Scholar
  147. 147.
    Montemartini, L. Primi appunti sopra laCaltha palustris L. in alta montagna. Ann. Lab. Bhanousia1: 1–10. 1927.Google Scholar
  148. 148.
    —. Sul ordine di caduta delle foglie nei pioppi e nei gelshi. Atti. Soc. Ital. Sci. Nat.69: 23–29. 1930.Google Scholar
  149. 149.
    Mothes, K. Zur Kenntnis des N-Stoffwechsels höherer Pflanzen. 3. Beitrag (unter besonderer Berücksichtigung des Blattalters und des Wasserhaushaltes). Planta12: 686–731. 1931.CrossRefGoogle Scholar
  150. 150.
    —. Ernährung, Struktur und Transpiration. Ein Betrag zur kausalen Analyse der Xeromorphosen. Biol. Zentralbl.52: 193–223. 1932.Google Scholar
  151. 151.
    Muenscher, W. L. D. A study of the relation of transpiration to the size and number of stomata. Am. Jour. Bot.2: 487–504. 1915.CrossRefGoogle Scholar
  152. 152.
    —. The effect of transpiration on the absorption of salts by plants. Am. Jour. Bot.9: 311–329. 1922.CrossRefGoogle Scholar
  153. 153.
    Muller, D. Fosfatets morfologiske Virkning paa Planterne. Tidsskr. Planteavl50: 150–156. 1945.Google Scholar
  154. 154.
    Netolitzky, F. Zur Theorie der Blattdurchlüftung. Ber. Deut. Bot. Ges.44: 571–573. 1926.Google Scholar
  155. 155.
    Newby, H. L. andPearsall, W. H. Observations on nitrogen metabolism in the leaves ofVitis andRheum. Proc. Leeds Phil. & Lit. Soc., Sci. Sect.,2: 81–85. 1930.Google Scholar
  156. 156.
    Nightingale, G. T. The nitrogen nutrition of green plants. Bot. Rev.3: 85–174. 1937.Google Scholar
  157. 157.
    Nordhausen, M. Ueber Sonnen- und Schattenblatter. I. Ber. Deut. Bot. Ges.21: 27–45. 1903.Google Scholar
  158. 158.
    Nutman, F. J. Studies of the physiology ofCoffea arabica. II. Stomatal movements in relation to photosynthesis under natural conditions. Ann. Bot.1: 681–693. 1937.Google Scholar
  159. 159.
    Oppenheimer, H. R. andElze, D. L. Irrigation of citrus trees according to physiological indicators. Palestine Jour. Bot., R,4: 20–46. 1941.Google Scholar
  160. 160.
    Passecker, F. Jugend- und Alterform bei der Aprikose und anderen Obstarten. Gartenbauwiss14: 614–625. 1940.Google Scholar
  161. 161.
    Pearsall, W. H. andEwing, J. The relation of nitrogen metabolism to plant succulence. Ann. Bot.43: 27–34. 1929.Google Scholar
  162. 162.
    Pease, V. A. Duration of leaves in evergreens. Am. Jour. Bot.4: 145–160. 1917.CrossRefGoogle Scholar
  163. 163.
    Penfound, W. T. Plant anatomy as conditioned by light intensity and soil moisture. Am. Jour. Bot.18: 558–572. 1931.CrossRefGoogle Scholar
  164. 164.
    —. The anatomy of the castor bean as conditioned by light intensity and soil moisture. Am. Jour. Bot.19: 538–546. 1932.CrossRefGoogle Scholar
  165. 165.
    Penston, N. L. Studies of the physiological importance of the mineral elements in plants. The variation in potassium content of maize leaves during the day. New Phyt.37: 1–14. 1938.CrossRefGoogle Scholar
  166. 166.
    Pfeiffer, N. E. Anatomical study of plants grown under glasses transmitting light of various ranges of wave lengths. Bot. Gaz.85: 427–436. 1928.CrossRefGoogle Scholar
  167. 167.
    Pickett, W. F. andKenworthy, A. L. The relationship between structure, chlorophyll content and photosynthesis in apple leaves. Proc. Am. Soc. Hort. Sci.37: 371–373. 1940.Google Scholar
  168. 168.
    — andBirkeland, C. J. The influence of some spray materials on the internal structure and chlorophyll content of leaves. Kan. Agr. Exp. Sta., Tech. Bull.53: 1–54. 1942.Google Scholar
  169. 169.
    Popp, H. W. A physiological study of the effect of light of various ranges of wave length on the growth of plants. Am. Jour. Bot.13: 706–735. 1926.CrossRefGoogle Scholar
  170. 170.
    Post, K. Some effects of temperature and light upon the flower bud formation and leaf character of stocks (Mathiola incana). Proc. Am. Soc. Hort. Sci.33: 649–652. 1936.Google Scholar
  171. 171.
    Potapov, P. G. andStankov, N. T. O sutochnoi periodichnosti mineral ’nogo pitaniia. Doklady Akademii Nauk SSSR, Novaia seriia (Compt. Rend. Acad. Sci. USSR, nouv. ser.)2: 40–45. 1934.Google Scholar
  172. 172.
    Prianischnikov, D. Über physiologische Acidität von Ammoniumnitrat. Biochem. Zeits.182: 204–214. 1927.Google Scholar
  173. 173.
    —. Über die Ausscheidung von Ammoniak durch die Pflanzenwurzeln bei Saurevergiftung. Biochem. Zeits.193: 211–215. 1928.Google Scholar
  174. 174.
    —. Über den Einfluss des Entwickelungestadiums auf die Ausnutzung des Ammoniak und Nitratstickstoffs durch die Pflanzen. Trans. 3rd Int. Cong. Soil Sci. Vol.1: 207–209. 1935.Google Scholar
  175. 175.
    Priestley, J. H. The biology of the living chloroplast. New Phyt.28: 197–217. 1929.CrossRefGoogle Scholar
  176. 176.
    Pringsheim, E. Wasserbewegung und Turgorregulation in welkenden Pflanzen. Jahrb. Wiss. Bot.43: 89–144. 1906.Google Scholar
  177. 177.
    Raunkiaer. 1887. [Quoted by Fuller and Bakke, 1918; original in Danish.]Google Scholar
  178. 178.
    Rippel, A. Der Einfluss der Bodentrockenheit auf den anatomischen Bau der Pflanzen insbesondere vonSinapsis alba, etc. Beih. Bot. Cent., Abt. 1,36: 187–260. 1919.Google Scholar
  179. 179.
    Rodrigues, A. Variacoes do recorte da folha da videira. Agronomica Lusitana3: 189–193. 1941.Google Scholar
  180. 180.
    Runyon, E. H. The organization of the creosote bush with respect to drought. Ecology15: 128–138. 1934.CrossRefGoogle Scholar
  181. 181.
    —. Ratio of water content to dry weight in leaves of the creosote bush. Bot. Gaz.97: 518–553. 1936.CrossRefGoogle Scholar
  182. 182.
    Sayre, J. D. Comparative transpiration of tobacco and mullein. Ohio Jour. Sci.19: 422–426. 1919.Google Scholar
  183. 183.
    —. The relation of hairy coverings to the resistance of leaves in transpiration. Ohio Jour. Sci.20: 55–86. 1920.Google Scholar
  184. 184.
    Scarth, G. W. Mechanism of action of light and other factors on stomatal movement. Plant Physiol.7: 481–504. 1932.PubMedGoogle Scholar
  185. 185.
    Schiemann, E. Antirrhinum majus mut.filiforme, zugleich ein Beitrag zur Chimärenfrage. Zeits. Ind. Abs. Ver.79: 50–82. 1940.CrossRefGoogle Scholar
  186. 186.
    Schimper, A. F. W. I. Ueber Schutzmittel des Laubes gegen Transpiration, vornehmlich in der Flora Java’s. Monatsber. Berliner Akad. Wiss. Bd. VII. 1890.Google Scholar
  187. 187.
    -. Plant geography upon a physiological basis. 839 pp. 1903.Google Scholar
  188. 188.
    Schnee, L. Der Laubfall vonEuphoribia pulcherrima bei gesteigerter Bodenfeuchtigkeit. Gartenbauwiss.9: 154–156. 1934.Google Scholar
  189. 189.
    Schneider, K. Beeinflussung von N-Stoffwechsel und Stengelanatomie durch Ernahrung. Zeits. Bot.29: 545–569. 1936.Google Scholar
  190. 190.
    Schratz, E. Zum Vergleich der Transpiration xeromorpher und mesomorpher Pflanzen. Jour. Ecol.19: 292–296. 1931.CrossRefGoogle Scholar
  191. 191.
    Seiden, R. Vergleichende Untersuchungen über den Einfluss verschiedener ausserer Faktoren, insobesondere auf den Aschengehalt in den Pflanzen. Landw. Versuchs-Sta.104: 1–50. 1926.Google Scholar
  192. 192.
    Shantz, H. D. Drought resistance and soil moisture. Ecology8: 145–157. 1927.CrossRefGoogle Scholar
  193. 193.
    Shields, L. M. Am. Jour. Bot.38: 1951.Google Scholar
  194. 194.
    Shirley, H. F. The influence of light intensity and light quality upon the growth of plants. Am. Jour. Bot.16: 354–390. 1929.CrossRefGoogle Scholar
  195. 195.
    —. Light as an ecological factor and its measurement. Bot. Rev.1: 355–381. 1935.CrossRefGoogle Scholar
  196. 196.
    Shope, Paul F. Stem and leaf structure of aspen at different altitudes in Colorado. Am. Jour. Bot.14: 116–119. 1927.CrossRefGoogle Scholar
  197. 197.
    Shreve, E. B. Seasonal changes in the water relations of desert plants. Ecology4: 266–292. 1923.CrossRefGoogle Scholar
  198. 198.
    Shull, C. A. Lateral water transfer in leaves ofGinkgo biloba. Plant Physiol.9: 387–389. 1934.PubMedGoogle Scholar
  199. 199.
    Singh, B. N. andLal, K. N. Investigation of the effect of age on assimilation of leaves. Ann. Bot.49: 291–307. 1935.Google Scholar
  200. 200.
    Sinnott, E. W. andBailey, I. W. Investigations on the phylogeny of the angiosperms. V. Foliar evidence as to the ancestry and early climatic environment of the angiosperms. Am. Tour. Bot.2: 1–22. 1915.CrossRefGoogle Scholar
  201. 201.
    Smith, G. H. Anatomy of the embryonic leaf. Am. Jour. Bot.21: 194–209. 1934.CrossRefGoogle Scholar
  202. 202.
    Smith, T. J. Response of biennial sweet clover to moisture, temperature and length of day. Jour. Am. Soc. Agron.34: 865–876. 1942.Google Scholar
  203. 203.
    Soding, H. Über die Bedingungen für die Entstehung der Sonneblatter. Ber. Deut. Bot. Ges.52: 110–120. 1934.Google Scholar
  204. 204.
    Spalding, V. M. The creosote bush (Covillea tridentata) in its relation to water supply. Bot. Gaz.38: 122–138. 1904.CrossRefGoogle Scholar
  205. 205.
    —. Absorption of water by leaves. Bot. Gaz.41: 262–282. 1906.CrossRefGoogle Scholar
  206. 206.
    Spoehr, H. A. The carbohydrate economy of cacti. Carnegie Inst. Wash., Yearbook16: 73–80. 1917.Google Scholar
  207. 207.
    Stahl, E. Zur physiologie und Biologie der Exkrete. Flora113: 1–132. 1919.Google Scholar
  208. 208.
    Stanfield, J. F. Osmotic pressure of leaves ofPinus scopulorum, and certain environment factors. Bot. Gaz.93: 453–465. 1932.CrossRefGoogle Scholar
  209. 209.
    Steemann Nielsen, E. Über die Bedeutung der sogenannten xeromorphen Struktur im Blattbau der Pflanzen auf Nährstoffarmen Boden. Dansk Bot. Ark.10: 1–28. 1940.Google Scholar
  210. 210.
    Stoddart, L. A. Osmotic pressure and water content of prairie plants. Plant Physiol.10: 661–680. 1935.PubMedGoogle Scholar
  211. 211.
    Swanson, A. F. Relation of leaf area to grain yield in sorghum. Jour. Am. Soc. Agron.33: 908–914. 1941.Google Scholar
  212. 212.
    Szymkiewicz, D. Badania ekologiczne nad gorskiemi roslinami. Kosmos (Lwow)51: 1–34. 1927.Google Scholar
  213. 213.
    Tellefsen, M. A. The relation of age to size in certain root cells and in vein islets of the leaves ofSalix nigra Marsh. Am. Jour. Bot.9: 121–139. 1922.CrossRefGoogle Scholar
  214. 214.
    Tetley, U. The development and cytology of the leaves of healthy and “silvered” Victoria plum trees. Ann. Bot.46: 633–652. 1932.Google Scholar
  215. 215.
    Thoday, D. The significance of reduction in the size of leaves. Jour. Ecol.19: 297–303. 1931.CrossRefGoogle Scholar
  216. 216.
    — andJones, K. M. Acid metabolism and respiration in succulent Compositae. Ann. Bot.3: 677–698. 1939.Google Scholar
  217. 217.
    Thut, F. Relative humidity variations affecting transpiration. Am. Jour. Bot.25: 589–595. 1938.CrossRefGoogle Scholar
  218. 218.
    Transeau, E. N. On the development of palisade tissue and resinous deposits in leaves. Science19: 866–867. 1904.PubMedCrossRefGoogle Scholar
  219. 219.
    Tumanov, J. J. Ungenugende Wasserversorgung und das Welken der Pflanzen als Mittel zur Erhöhung ihrer Dürreresistenz. Planta3: 391–480. 1927.CrossRefGoogle Scholar
  220. 220.
    Turner, H. The ecology ofRhus toxicodendron. Trans. Ill. State Acad. Sci.15: 208–211. 1923.Google Scholar
  221. 221.
    Turner, T. W. Studies of the mechanism of the physiological effects of certain mineral salts in altering the ratio of top growth to root growth in seed plants. Am. Jour. Bot.9: 415–445. 1922.CrossRefGoogle Scholar
  222. 222.
    Turrell, F. M. The area of the internal exposed surface of dicotyledon leaves. Am. Jour. Bot.23: 255–264. 1936.CrossRefGoogle Scholar
  223. 223.
    —. The relation between chlorophyll concentration and the internal surface of mesomorphic and xeromorphic leaves grown under artificial light. Proc. Iowa Acad. Sci.46: 107–117. 1940a.Google Scholar
  224. 224.
    —. The relation of internal surface to intercellular space in foliage leaves. Science92: 244. 1940b.PubMedCrossRefGoogle Scholar
  225. 225.
    —. A quantitative morphological analysis of large and small leaves of alfalfa with special reference to internal surface. Am. Jour. Bot.29: 400–415. 1942.CrossRefGoogle Scholar
  226. 226.
    Ulrich, A. Metabolism in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Am. Jour. Bot.29: 220–226. 1942.CrossRefGoogle Scholar
  227. 227.
    Ursprung, A. Osmotic quantities of plant cells in given phases. Plant Physiol.10: 115–133. 1935.PubMedGoogle Scholar
  228. 228.
    Vesque, M. M. andViet, M. S. De l’influence du milieu sur la structure anatomique des vegetaux. Ann. Sci. Nat. VI. Bot.12: 176. 1881.Google Scholar
  229. 229.
    Volkens, G. Die Flora der ägyptisch-arabischen Wüste auf Grundlage anatomisch-physiologischer Forschungen. 1887.Google Scholar
  230. 230.
    Wadleigh, C. H.,et al. The trend of starch reserves in bean plants before and after irrigation of a saline soil. Proc. Am. Soc. Hort. Sci.43: 201–209. 1943.Google Scholar
  231. 231.
    Wallace, R. H. andClum, H. H. Leaf temperatures. Am. Jour. Bot.25: 83–97. 1938.CrossRefGoogle Scholar
  232. 232.
    Warming, E. Oecology of plants. 1925.Google Scholar
  233. 233.
    Watson, A. N. Further studies on the relation between thermal emissivity and plant temperatures. Am. Jour. Bot.21: 605–609. 1934.CrossRefGoogle Scholar
  234. 234.
    Watson, R. W. The mechanism of elongation in palisade cells. New Phyt.41: 206–221. 1942.CrossRefGoogle Scholar
  235. 235.
    Watson, W. Absorption of water by dead roots. Ann. Bot.8: 119–120. 1894.Google Scholar
  236. 236.
    Weaver, J. E. andMogensen, A. Relative transpiration of coniferous and broad-leaved trees in autumn and winter. Bot. Gaz.68: 393–424. 1919.CrossRefGoogle Scholar
  237. 237.
    —. Investigations on the root habits of plants. Am. Jour. Bot.12: 502–509. 1925.CrossRefGoogle Scholar
  238. 238.
    - andClements, F. E. Plant ecology. 520 pp. 1929.Google Scholar
  239. 239.
    Welton, F. A. Lodging in oats and wheat. Bot. Gaz.85: 121–151. 1928.CrossRefGoogle Scholar
  240. 240.
    Westermaier, M. Ueber Bau und Funktion des pflanzlichen Hautgewebesystems. Jahrb. Wiss. Bot.14: ?. 1884.Google Scholar
  241. 241.
    Wetzel, K. Die Wasseraufnahme der höheren pflanzengemässigter Klimate durch oberirdische Organe. Flora117: 221–269. 1924.Google Scholar
  242. 242.
    White, P. R. “Root pressure”—an unappreciated force in sap movement. Am. Jour. Bot.25: 223–227. 1938.CrossRefGoogle Scholar
  243. 243.
    Wiegand, K. M. The relation of hairy and cutinized coverings to transpiration. Bot. Gaz.49: 430–444. 1910.CrossRefGoogle Scholar
  244. 244.
    Wiesner, J. Grundversuche über den Einfluss der Luftbewegung auf die Transpiration der Pflanzen. Sitzungsber. Akad. Wiss., Wien, Abt. 1,96: 182. 1887.Google Scholar
  245. 245.
    Williams, H. F. Absorption of water by the leaves of common mesophytes. Jour. Elisha Mitchell Sci. Soc.48: 83–100. 1932.Google Scholar
  246. 246.
    Wood, J. G. The stomatal frequencies, transpiration and osmotic pressures of sclerophyll and tomentose-succulent leaved plants. Jour. Ecol.22: 69–87. 1934.CrossRefGoogle Scholar
  247. 247.
    Woodroof, J. G. andWoodroof, N. C. Pecan root growth and development. Jour. Agr. Res.49: 511–530. 1934.Google Scholar
  248. 248.
    Wylie, R. B. Relations between tissue organization and vein distribution in dicotyledon leaves. Am. Jour. Bot.26: 219–225. 1939.CrossRefGoogle Scholar
  249. 249.
    —. The role of the epidermis in foliar organization and its relations to the minor venation. Am. Jour. Bot.30: 273–280. 1943.CrossRefGoogle Scholar
  250. 250.
    —. Relations between tissue organization and vascularization in leaves of certain tropical and subtropical dicotyledons. Am. Jour. Bot.33:721–726. 1946.CrossRefGoogle Scholar
  251. 251.
    Yapp, R. H. Spiraea ulmaria L. and its bearing on the problem of xeromorphy in marsh plants. Ann. Bot.26: 815–870. 1912.Google Scholar
  252. 252.
    — andMason, U. C. The distribution of water in the shoots of certain herbaceous plants. Ann. Bot.46: 159–181. 1932.Google Scholar
  253. 253.
    Yates, R. C. andCurtis, J. T. The effect of sucrose and other factors on the shoot-root ratio of orchid seedlings. Am. Jour. Bot.36: 390–396. 1949.CrossRefGoogle Scholar
  254. 254.
    Yocum, L. W. The stomata and transpiration of oaks. Plant Physiol.10: 795–801. 1935.PubMedGoogle Scholar
  255. 255.
    Yoshii, Y. andJimbo, T. Untersuchungen über die osmotischen Werte bei Pflanzen auf dem Berg Hakkôda. Sci. Repts. Tôhoku Imp. Univ. 4th Ser. (Biol.)6: 259–283. 1931.Google Scholar
  256. 256.
    Zalenski, V. Materials for the study of the quantitative anatomy of different leaves of the same plant. Mem. Polytech. Inst. Kiev.4: 1–204. 1904.Google Scholar
  257. 257.
    Zamfirescu, N. Cercetari asupra absorptiunii apei prin organele aeriene ale plantelor. Supl. Bul. Min. Agric. si Domeniilor (Bucharest)3: 1–105. 1931.Google Scholar
  258. 258.
    Zirkle, C. The plant vacuole. Bot. Rev.3: 1–30. 1937.Google Scholar

Copyright information

© The New York Botanical Garden 1950

Authors and Affiliations

  • Lora Mangum Shields
    • 1
  1. 1.New Mexico Highlands UniversityLas Vegas

Personalised recommendations