Skip to main content
Log in

Leaf xeromorphy as related to physiological and structural influences

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Alekseev, A. M. Influence of water content of leaves upon photosynthesis. Bot. Zhur. SSSR20: 227–241. 1935.

    Google Scholar 

  2. Alexandrov, W. andAlexandrova, O. Über das mobile Bleichgewicht in der Blattstruktur. Beih. Bot. Cent. 1 Abt.44: 267–292. 1927.

    Google Scholar 

  3. Alexandrov, W. G. Beiträge zur Kenntnis des Zuckerrübenwurzel. Planta7: 124–132. 1929.

    Article  Google Scholar 

  4. Artschwager, E. Morphology of the vegetative organs of sugar cane. Jour. Agr. Res.60: 503–550. 1940.

    Google Scholar 

  5. Ashby, E. Transpiratory organs ofLarrea tridentata and their ecological significance. Ecology13: 182–188. 1932.

    Article  Google Scholar 

  6. Avery, G. S., Jr. Structural responses to the practice of topping tobacco plants: A study of cell size, cell number, leaf size, and veinage of leaves at different levels on the stalk. Bot. Gaz.96: 314–329. 1934.

    Article  Google Scholar 

  7. Bailey, I. W. andSinnott, E. W. The climatic distribution of certain types of angiosperm leaves. Am. Jour. Bot.3: 24–39. 1916.

    Article  Google Scholar 

  8. Baumert, K. Experimentelle Untersuchungen über Lichtschuzeinrichtungen an grünen Blättern. Beitr. Biol. Pflanzen9: 83–162. 1907.

    Google Scholar 

  9. Bentley, J. andWolf, F. A. Glandular leaf hairs of oriental tobacco. Bull. Torrey Bot. Club72: 345–360. 1945.

    Article  Google Scholar 

  10. Bergen, Y. Transpiration of sun leaves and shade leaves ofOlea europaea and other broad-leaved evergreens. Bot. Gaz.38: 285–296. 1904.

    Article  Google Scholar 

  11. Biale, J. B. Periodicity in transpiration of lemon cuttings under constant environmental conditions. Proc. Am. Soc. Hort. Sci.38: 70–74. 1941.

    Google Scholar 

  12. Bindloss, E. A. A developmental analysis of cell length as related to stem size. Am. Jour. Bot.29: 179–188. 1942.

    Article  Google Scholar 

  13. Blackman, H. V. The compound interest law and plant growth. Ann. Bot.33: 353–360. 1919.

    Google Scholar 

  14. Boon-Long, T. S. Transpiration as influenced by osmotic concentration and cell permeability. Am. Jour. Bot.28: 333–343. 1941.

    Article  Google Scholar 

  15. Brenner, M. In Burgerstein, Die Transpiration der Pflanzen, 1904, p. 210.

  16. Brewig, A. Ein Beitrag zur Analyse des Transpirations-widerstandes. Planta20: 734–791. 1933.

    Article  Google Scholar 

  17. Brierley, W. G. Absorption of water by the foliage of some common fruit species. Proc. Soc. Hort. Sci.32: 277–283. 1935.

    Google Scholar 

  18. Briggs, L. J. andShantz, H. L. The relative wilting coefficients for different plants. Bot. Gaz.53: 229–235. 1912.

    Article  Google Scholar 

  19. ——. The water requirement of plants. II. A review of the literature. U. S. Dept. Agr. Bur. Pl. Ind., Bull.285: 1–96. 1913.

    Google Scholar 

  20. ——. Relative water requirement of plants. Jour. Agr. Res.3: 1–63. 1914.

    CAS  Google Scholar 

  21. Briggs, L. J. Hourly transpiration rate on clear days as determined by cyclic environmental factors. Jour. Agr. Res.5: 583–650. 1916.

    Google Scholar 

  22. Bright, D. N. E. The effects of exposure upon the structure of certain heath plants. Jour. Ecol.16: 323–365. 1928.

    Article  Google Scholar 

  23. Brown, H. T. andEscombe, F. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Phil. Trans. Royal Soc. (London), B,193: 223–291. 1900.

    Article  CAS  Google Scholar 

  24. Broyer, T. C. andHoagland, D. R. Metabolic activities of roots and their bearing on the relation of upward movement of salts and water in plants. Am. Jour. Bot.30: 261–273. 1943.

    Article  CAS  Google Scholar 

  25. Cain, S. A. andPotzger, J. E. A comparison of leaf tissues ofGaylussacia baccata (Wang.) C. Koch andVaccinium vacillons Kalm. grown under different conditions. Am. Mid. Nat.14: 97–112. 1933.

    Article  Google Scholar 

  26. Carroll, J. C. andWelton, F. A. Daily periodicity of stomata in certain species of turf grasses. Bot. Gaz.99: 420–423. 1937.

    Article  Google Scholar 

  27. Chancerl, L. Le rôle du calcium dans la végétation forestière. Rev. Gen. Bot.25: 83–89. 1914.

    Google Scholar 

  28. Clements, E. S. The relation of leaf structure to physical factors. Trans. Am. Micr. Soc.26: 19–102. 1905.

    Article  Google Scholar 

  29. Clements, F. E. andMartin, E. V. Effect of soil temperature on transpiration inHelianthus annuus. Plant Physiol.9: 619–630. 1934.

    PubMed  CAS  Google Scholar 

  30. Clum, H. H. The effect of transpiration and environmental factors on leaf temperatures. I. Transpiration. Am. Jour. Bot.13: 194–216. 1926a.

    Article  Google Scholar 

  31. —. The effect of transpiration and environmental factors on leaf temperatures. II. Light intensity and the relation of transpiration on the thermal death point. Am. Tour. Bot.13: 217–230. 1926.

    Article  Google Scholar 

  32. Combes, R. Détermination des intensités lumineuses optima. Ann. Sci. Nat. IX. Bot.11: 75. 1910.

    Google Scholar 

  33. Conti, A. Forma e sviluppo del palizzata in rapporto alla funzione: ricerche anatomiche. Ateneo Parmense6: 561–574. 1934.

    Google Scholar 

  34. Coulter, J. M.,et al. A textbook of botany for colleges and universities. Vol. 3, Ecology. 471 pp. 1931.

  35. Coville, F. V. Botany of the Death Valley expedition. Contr. U. S. Nat. Herb.4: 53. 1893.

    Google Scholar 

  36. Cowart, F. F. Apple leaf structure as related to position of the leaf upon the shoot and to type of growth. Proc. Am. Soc. Hort. Sci.33: 145–148. 1936.

    Google Scholar 

  37. Curtis, O. F. Leaf temperatures and the cooling of leaves by radiation. Plant Physiol.11: 343–364. 1936.

    PubMed  CAS  Google Scholar 

  38. D’Almeida, J. F. R. andDesai, J. L. A contribution to the study of the ecological foliar anatomy of Indian plants. Jour. Univ. Bombay16: 1–58. 1942.

    Google Scholar 

  39. Darwin, F. The effect of light on the transpiration of leaves. Proc. Royal Soc. London, B,87: 281–299. 1914.

    CAS  Google Scholar 

  40. Dastur, R. H. The relation between water content and photosynthesis. Ann. Bot.39: 769–786. 1925.

    Google Scholar 

  41. — andBuhariwalla, N. A. Chlorophyll from tropical plants and its quantitative determination by means of the spectrograph. Ann. Bot.42: 949–964. 1928.

    CAS  Google Scholar 

  42. Davidson, O. W. andShive, J. W. The influence of the hydrogenion concentration of the culture solution upon the absorption and assimilation of nitrate and ammonium nitrogen by peach trees grown in sand cultures. Soil Sci.37: 357–385. 1934.

    Article  CAS  Google Scholar 

  43. ——. Determination of the nitrogenous fractions in vegetative tissue of the peach. Plant Physiol.10: 73–92. 1935.

    PubMed  CAS  Google Scholar 

  44. Delf, E. Transpiration in succulent plants. Ann. Bot.26: 409–441. 1912.

    Google Scholar 

  45. Delisle, A. L. Morphogenetic studies in the development of successive leaves inAster, with respect to relative growth, cellular differentiation and auxin relationships. Am. Jour. Bot.25: 420–430. 1938.

    Article  CAS  Google Scholar 

  46. Desai, M. C. Effect of certain nutrient deficiencies on stomatal behavior. Plant Physiol.12: 253–283. 1937.

    Article  PubMed  CAS  Google Scholar 

  47. Dittmer, H. J. A comparative study of the number and length of roots produced in nineteen angiosperm species. Bot. Gaz.109: 354–357. 1948.

    Article  Google Scholar 

  48. Doyle, J. andClinch, P. The dehydration rates of conifer leaves in relation to pentosan content. Sci. Proc. Royal Dublin Soc.18: 265–275. 1926.

    CAS  Google Scholar 

  49. Elliot, J. H. Growth and differentiation in the vascular system during leaf development in the dicotyledon. Proc. Leeds Phil. & Lit. Soc.2: 440–450. 1933.

    Google Scholar 

  50. Emerson, F. W. Basic botany. 373 pp. 1947.

  51. Evans, M. The physiology of succulent plants. Biol.Rev. & Biol. Proc. Cambridge Phil. Soc.7: 181–211. 1932.

    CAS  Google Scholar 

  52. Ewart, A. J. The influence of correlation uponthe size of leaves. Ann. Bot.20: 79–82. 1906.

    Google Scholar 

  53. Farr, C. H. Studies on the growth of root hairs in solutions. Am. Jour. Bot.14: 446–456, 497–515, 553–564. 1927.

    Article  CAS  Google Scholar 

  54. Fitting, H. Die Wasserversorgung und die osmotischen Druckverhältnisse der Wüstenpflanzen. Zeits. Bot.3: 209–275. 1911.

    Google Scholar 

  55. Folsom, D. The influence of certain environmental conditions, especially water supply, upon form and structure inRanunculus. Physiol. Res.2: 209–272. 1918.

    Google Scholar 

  56. Frank, B. Ueber die Veränderung der Lage der Chlorophyllkörner und des Protoplasmas in der Zelle, und deren innere und äussere Ursachen. Jahrb. Wiss. Bot.8: 216–303. 1872. [Quoted by Haberlandt, 1928.]

    Google Scholar 

  57. Freeland, R. O. Effect of transpiration upon the absorption and distribution of mineral salts in plants. Am. Jour. Bot.23: 353–362. 1936.

    Article  Google Scholar 

  58. Fuller, G. D. andBakke, A. L. Raunkiaer’s “life forms”, “Leafsize classes”, and statistical methods. Plant World21: 25–37. 1918.

    Google Scholar 

  59. Gail, F. W. Osmotic pressure of cell sap and its possible relation to winter killing and leaf fall. Bot. Gaz.81: 434–445. 1926.

    Article  CAS  Google Scholar 

  60. Gates, F. C. Winter as a factor in the xerophily of certain evergreen ericads. Bot. Gaz.57: 445–489. 1914.

    Article  Google Scholar 

  61. —. Relation between evaporation and plant succession. Am. Jour. Bot.4: 161–178. 1917.

    Article  Google Scholar 

  62. —. Evaporation in vegetation at different heights. Am. Jour. Bot.13: 167–178. 1926.

    Article  Google Scholar 

  63. Geneau de Lamarlière. Recherches physiologiques sur les feuilles développées à l’ombre et au soleil. Rev. Gén. Bot.4: 481–496, 529–544. 1892.

    Google Scholar 

  64. Gier, L. J. andBurress, R. M. Anatomy ofTaraxacum officinale “Weber”. Trans. Kans. Acad. Sci.45: 94–97. 1942.

    Article  Google Scholar 

  65. Goebel. Organographie. I. 1898.

  66. Goebeler, E. Die Schutzvorrichtungen am Stammscheitel der Farne. Flora69: 487. 1886.

    Google Scholar 

  67. Graner, E. A. Genetics ofManihot. I. Inheritance of leaf form and color of the outer root skin inManihot utilissima Pohl. Bragantia2: 13–22. 1942.

    Google Scholar 

  68. Gray, J. andPeirce, G. J. The influence of light upon the action of stomata and its relation to the transpiration of certain grains. Am. Jour. Bot.6: 131–155. 1919.

    Article  Google Scholar 

  69. Greathouse, G. A. Conductivity measurements of plant sap. Plant Physiol.13: 553–569. 1938.

    PubMed  CAS  Google Scholar 

  70. Griffin, A. Some notes on anthocyanin formation in leaves with cut veins. Butler Univ. Bot. Stud.3: 139–140. 1935.

    CAS  Google Scholar 

  71. Groom, P. Remarks on the ecology of Coniferae. Ann. Bot.24: 241–269. 1910.

    Google Scholar 

  72. Grossenbacher, K. A. Autonomic cycle of rate of exudation of plants. Am. Jour. Bot.26: 107–109. 1939.

    Article  Google Scholar 

  73. Guthrie, J. D. Effect of environmental conditions on the chloroplast pigments. Am. Jour. Bot.16: 716–746. 1929.

    Article  CAS  Google Scholar 

  74. Haberlandt, G. Physiological plant anatomy. 4th ed.777 pp. 1928.

  75. Halma, F. F. Quantitative differences in palisade tissue of citrus leaves. Bot. Gaz.87: 319–324. 1929.

    Article  Google Scholar 

  76. Hamner, K. C. Effects of nitrogen supply on rates of photosynthesis and respiration in plants. Bot. Gaz.97: 744–764. 1936.

    Article  CAS  Google Scholar 

  77. Hanson, H. C. Leaf structure as related to environment. Am. Tour. Bot.4: 533–560. 1917.

    Article  Google Scholar 

  78. Hansteen-Cranner, B. Über das Verhalten der Kulturpflanzen zu den Bodensalzen. Jahrb. Wiss. Bot.53: 536–599. 1914.

    Google Scholar 

  79. Hare, C. L. The arborescentSenecios of Kilimanjaro: A study in ecological anatomy. Trans. Royal Soc. Edinburgh60: 335–371. 1941.

    Google Scholar 

  80. Hasselbring, H. The effect of shading on the transpiration and assimilation of the tobacco plant in Cuba. Bot. Gaz.57: 257–286. 1914.

    Article  CAS  Google Scholar 

  81. Hellriegel, F. Beitrage zu den Naturwiss. Grundlagen des Ackerbaus. 1883.

  82. Hercik, F. O Závislosti mezi povrochovým napctím stavy a plochou listu. Biol. Listy13: 390–399. 1927.

    Google Scholar 

  83. Herrick, E. M. Seasonal and diurnal variations in the osmotic values and suction tension values in the aerial portions ofAmbrosia trifida L. Am. Jour. Bot.20: 18–34. 1933.

    Article  Google Scholar 

  84. Hewitt, S. P. andCurtis, O. F. The effect of temperature on loss of dry matter and carbohydrate from leaves by respiration and translocation. Am. Jour. Bot.35: 746–755. 1948.

    Article  CAS  Google Scholar 

  85. Hill, T. G. Observations on the osmotic properties of certain salt marsh plants. New Phyt.7: 133–142. 1908.

    Article  Google Scholar 

  86. Hiramatu, K. The relation of CO2 assimilation activity to the age of evergreen leaves. Ecol. Rev.5: 25–32. 1939.

    Google Scholar 

  87. Hoagland, D. R. andBroyer, T. C. General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol.11: 471–507. 1936.

    PubMed  CAS  Google Scholar 

  88. Hohn, Karl. Die Bcdeutung der Wurzelhaare für die Wasseraufnahme der Pflanzen. Zeit. Bot.27: 529–564. 1934.

    Google Scholar 

  89. Holttum, R. E. On periodic leaf-change and flowering of trees in Singapore. Gardens’ Bull. Straits Settlements5: 173–206. 1931.

    Google Scholar 

  90. Hormann, E. Der Ausdruck optimalen Lichtgenusses im Blattbau der Pflanze. Bot. Archiv18: 288–296. 1927.

    Google Scholar 

  91. Iljin, V. S. Die Regulierung der Spaltöffnungen im Zusammenhang mit der Veränderung des osmotischen Druckes. Beih. Bot. Cent., Abt. 1,32: 15–35. 1914.

    CAS  Google Scholar 

  92. —. Relation of transpiration to assimilation in steppe plants. Jour. Ecol.4: 65–82. 1916.

    Article  Google Scholar 

  93. —. Wirkung der Kationen von Salzen auf den Zerfall und die Bildung von Stärke in der Pflanze. Biochem. Zeits.132: 492–510. 1922.

    Google Scholar 

  94. —,et al. Osmotic pressure in roots and in leaves in relation to habitat moisture. Jour. Ecol.4: 160–173. 1916.

    Article  Google Scholar 

  95. Imamura, S. I. Über die Dorsiventralität der unifazialen Blätter vonIris japonica Thunb. und ihre Beeinflussbarkeit durch die Schwerkraft. Mem. Coll. Sci. Kyoto Imp. Univ., B,6: 271–331. 1931.

    Google Scholar 

  96. Isanogle, I. T. Effects of controlled shading upon the development of leaf structure in two deciduous tree species. Ecology25: 404–413. 1944.

    Article  Google Scholar 

  97. Iwanoff, L. Zur Methodik der Transpirationsbestimmung am Standort. Ber. Deut. Bot. Ges.46: 306–310. 1928.

    Google Scholar 

  98. James, W. O. Studies of the physiological importance of the mineral elements in plants. I. The relation of potassium to the properties and functions of the leaf. Ann. Bot.44: 173–198. 1930.

    CAS  Google Scholar 

  99. Jost, L. Lectures on plant physiology. English translation by Gibson. 564 pp. 1907.

  100. Kerner, A. andOliver, F. W. The natural history of plants. Vol.1: 313.

  101. Kisselew, N. M. Über die Transpiration welkender Sonnen- und Schattenblätter. Beih. Bot. Cent. 1 Abt.44: 181–217. 1927.

    Google Scholar 

  102. Kisser, J. Untersuchungen ueber den Einfluss der Nahrsalze auf die Wasserabgabe, Wasseraufnahme, relative Spross- und Wurzelmasse und die Blattstruktur. I. Teil. II. Teil: Veränderungen der Blattstruktur unter dem Einflüsse de Nährsalze. Planta3: 562–596. 1927.

    Article  Google Scholar 

  103. Kochanovsky, L. Some investigations on the transpiration of plants under the conditions of a sub-alpine zone. Tour. Soc. Bot. Russ.9: 239–250. 1926.

    Google Scholar 

  104. Kokin, A. The influence of daylight and number of leaves on the sugar content of beet roots. Phys. Untersuch. Zuckerrube. Erste Artikelserie. Ukrainisches Inst. Agnew. Bot. Sect. Pflanzenphysiol. Charkiw.1: 122–140. 1930.

    Google Scholar 

  105. Korstian, C. F. Density of cell sap in relation to environmental conditions in the Wasatch Mountains of Utah. Jour. Agr. Res.28: 845–907. 1924.

    Google Scholar 

  106. Kramer, P. J. The absorption of water by root systems of plants. Am. Jour. Bot.19: 148–164. 1932.

    Article  Google Scholar 

  107. —. The intake of water through dead root systems and its relation to the problem of absorption by transpiring plants. Am. Jour. Bot.20: 481–493. 1933.

    Article  Google Scholar 

  108. —. The relation between rate of transpiration and rate of absorption of water in plants. Am. Jour. Bot.24: 10–15. 1937.

    Article  Google Scholar 

  109. —. Root resistance as a cause of the absorption lag. Am. Jour. Bot.25: 110–113. 1938.

    Article  CAS  Google Scholar 

  110. Krause, H. Beitrage zur Kenntnis der Wasseraufnahme durch oberirdische Pflanzenorgane. Ost. Bot. Zeits.84: 241–270. 1935.

    Article  Google Scholar 

  111. Kraus, E. J. andKraybill, H. R. Vegetation and reproduction with special reference to the tomato. Or. Agr. Exp. Sta., Bull. 149. 1918.

  112. Kummler, A. Ueber die Funktion der Spaltöffnungen weissbunter Blätter. Jahrb. Wiss. Bot.61: 610–670. 1922.

    Google Scholar 

  113. Kurz, H. Hydrogen ion concentration in relation to ecological factors. Bot. Gaz.76: 1–29. 1923.

    Article  CAS  Google Scholar 

  114. Leclerc du Sablon, M. Sur les causes du dégagement et de la rétention du vapeur d’eau chez les plantes. Rev. Gén. Bot.25: 49–63, 104–122. 1913.

  115. Livingston, B. E. Light intensity and transpiration. Bot. Gaz.52: 417–438. 1911a.

    Article  Google Scholar 

  116. —. The relation of the osmotic pressure of the cell sap in plants to arid habitats. Plant World14: 153–164. 1916.

    Google Scholar 

  117. — andBrown, W. H. Relation of the daily march of transpiration to variations in water content of foliage leaves. Bot. Gaz.53: 309–330. 1912.

    Article  Google Scholar 

  118. Lloyd, F. E. The physiology of stomata. Carnegie Inst. Wash., Publ.82: 1–142. 1908.

    Google Scholar 

  119. —. The relation of transpiration and stomatal movement to water content of the leaves inFouquieria splendens. Plant World15: 1–4. 1912.

    Google Scholar 

  120. Loehwing, W. F. Calcium, potassium and iron balance in certain crop plants in relation to their metabolism. Plant Physiol.3: 261–275. 1928.

    PubMed  CAS  Google Scholar 

  121. Lothelier, A. Recherches sur les plantes à piquants. Revu Gen. Bot.5: 480–483. 1893.

    Google Scholar 

  122. Lubimenko, W. Production de la substance sèche et de la chlorophylle chez les végétaux supérieurs aux differentes intensites lumineuses. Ann. Sci. Nat. IX Bot.7: 321–415. 1908.

    Google Scholar 

  123. Lukaszewicz, J. Über das Vorkommen von Kalium in manchen pflanzlichen Gebilden. Bull. Acad. Polonaise Sci. Let., B,1926:559–577. 1926.

    Google Scholar 

  124. Lundegardh, H. Die Nahrstoffaufnahme der Pflanze. 1932.

  125. MacDougal, D. T. The water balance of desert plants. Ann. Bot.26: 71–93. 1912.

    Google Scholar 

  126. —. The reactions of plants to new habitats. Ecology2: 1–20. 1921.

    Article  CAS  Google Scholar 

  127. et al. Echinocactus. Physiol. Res.1: 289–325. 1913.

    Google Scholar 

  128. — andSpoehr, H. A. The origination of xerophytism. Plant World21: 245–249. 1918.

    CAS  Google Scholar 

  129. et al. Basis of succulence in plants. Bot. Gaz.67: 405–416. 1919.

    Article  CAS  Google Scholar 

  130. McDougall, W. B. andPenfound, W. T. Anatomy of deciduous forest plants. Ecology9: 349–353. 1928.

    Article  Google Scholar 

  131. Mallery, T. D. Changes in the osmotic value of the expressed sap of leaves and small twigs ofLarrea tridentata as influenced by environmental conditions. Ecol. Mon.5: 1–35. 1935.

    Article  CAS  Google Scholar 

  132. Marsh, F. L. Water content and osmotic pressure of sun and shade leaves of certain woody prairie plants. Bot. Gaz.102: 812–814. 1941.

    Article  Google Scholar 

  133. Marthaler, H. Die Stickstoffernährung der Hockmoorpflanzen. Augleich ein Beitrag zum Xerophytenproblem. Jahrb. Wiss. Bot.88: 723–758. 1939.

    CAS  Google Scholar 

  134. Martin, E. V. Effect of solar radiation on transpiration ofHelianthus annuus. Plant Physiol.10: 341–354. 1935.

    PubMed  CAS  Google Scholar 

  135. Mason, T. G. andMaskell, E. J. Further studies on transport in the cotton plant. II. An autogenetic study of concentrations and vertical gradients. Ann. Bot.48: 119–141. 1934.

    CAS  Google Scholar 

  136. Maximov, N. A. andKrasnosselsky-Maximov, T. A. Wilting of plants in its connection with drought resistance. Jour. Ecol.12: 95–110. 1924.

    Article  Google Scholar 

  137. -Maximov, N. A.. The plant in relation to water. A study of the physiological basis of drought resistance. 451 pp. 1929. [English trans. by Yapp].

  138. —. The physiological significance of the xeromorphic structure of plants. Jour. Ecol.19: 272–282. 1931.

    Article  Google Scholar 

  139. Mendel, K. Orange leaf transpiration under orchard conditions. II. Soil moisture content decreasing. Palestine Jour. Bot., R,5: 59–85. 1945.

    Google Scholar 

  140. Mer, C. L. The factors determining the resistance to movement of water in the leaf. Ann. Bot.4: 397–401. 1940.

    Google Scholar 

  141. Meyer, B. S. The measurement of the rate of water vapor loss from leaves under standard conditions. Am. Jour. Bot.14: 582–591. 1927.

    Article  Google Scholar 

  142. —. Seasonal variations in the physical and chemical properties of the leaves of the pitch pine, with especial reference to cold resistance. Am. Jour. Bot.15: 449–472. 1928.

    Article  CAS  Google Scholar 

  143. —. Effects of deficiencies of certain mineral elements on the development ofTaraxacum kok-saghyz. Am. Jour. Bot.32: 523–528. 1945.

    Article  CAS  Google Scholar 

  144. Meyer, W. Bau und Beanspruchung des Leitungssystems einiger krautiger Pflanzen. Jahrb. Wiss. Bot.79: 385–405. 1934.

    Google Scholar 

  145. Miller, E. S. andJohnson, J. The relation between leaf tissue pigment concentration and yield in corn. Jour. Am. Soc. Agron.30: 941–946. 1938.

    CAS  Google Scholar 

  146. Mittmeyer, G. Studien über die Abhängigkeit der Transpiration verschiedener Blattypen vom Licht und Sättigungsderfizit der Luft. Jahrb. Wiss. Bot.74: 364–428. 1931.

    Google Scholar 

  147. Montemartini, L. Primi appunti sopra laCaltha palustris L. in alta montagna. Ann. Lab. Bhanousia1: 1–10. 1927.

    Google Scholar 

  148. —. Sul ordine di caduta delle foglie nei pioppi e nei gelshi. Atti. Soc. Ital. Sci. Nat.69: 23–29. 1930.

    Google Scholar 

  149. Mothes, K. Zur Kenntnis des N-Stoffwechsels höherer Pflanzen. 3. Beitrag (unter besonderer Berücksichtigung des Blattalters und des Wasserhaushaltes). Planta12: 686–731. 1931.

    Article  CAS  Google Scholar 

  150. —. Ernährung, Struktur und Transpiration. Ein Betrag zur kausalen Analyse der Xeromorphosen. Biol. Zentralbl.52: 193–223. 1932.

    CAS  Google Scholar 

  151. Muenscher, W. L. D. A study of the relation of transpiration to the size and number of stomata. Am. Jour. Bot.2: 487–504. 1915.

    Article  Google Scholar 

  152. —. The effect of transpiration on the absorption of salts by plants. Am. Jour. Bot.9: 311–329. 1922.

    Article  Google Scholar 

  153. Muller, D. Fosfatets morfologiske Virkning paa Planterne. Tidsskr. Planteavl50: 150–156. 1945.

    Google Scholar 

  154. Netolitzky, F. Zur Theorie der Blattdurchlüftung. Ber. Deut. Bot. Ges.44: 571–573. 1926.

    Google Scholar 

  155. Newby, H. L. andPearsall, W. H. Observations on nitrogen metabolism in the leaves ofVitis andRheum. Proc. Leeds Phil. & Lit. Soc., Sci. Sect.,2: 81–85. 1930.

    CAS  Google Scholar 

  156. Nightingale, G. T. The nitrogen nutrition of green plants. Bot. Rev.3: 85–174. 1937.

    CAS  Google Scholar 

  157. Nordhausen, M. Ueber Sonnen- und Schattenblatter. I. Ber. Deut. Bot. Ges.21: 27–45. 1903.

    Google Scholar 

  158. Nutman, F. J. Studies of the physiology ofCoffea arabica. II. Stomatal movements in relation to photosynthesis under natural conditions. Ann. Bot.1: 681–693. 1937.

    CAS  Google Scholar 

  159. Oppenheimer, H. R. andElze, D. L. Irrigation of citrus trees according to physiological indicators. Palestine Jour. Bot., R,4: 20–46. 1941.

    Google Scholar 

  160. Passecker, F. Jugend- und Alterform bei der Aprikose und anderen Obstarten. Gartenbauwiss14: 614–625. 1940.

    Google Scholar 

  161. Pearsall, W. H. andEwing, J. The relation of nitrogen metabolism to plant succulence. Ann. Bot.43: 27–34. 1929.

    CAS  Google Scholar 

  162. Pease, V. A. Duration of leaves in evergreens. Am. Jour. Bot.4: 145–160. 1917.

    Article  Google Scholar 

  163. Penfound, W. T. Plant anatomy as conditioned by light intensity and soil moisture. Am. Jour. Bot.18: 558–572. 1931.

    Article  Google Scholar 

  164. —. The anatomy of the castor bean as conditioned by light intensity and soil moisture. Am. Jour. Bot.19: 538–546. 1932.

    Article  Google Scholar 

  165. Penston, N. L. Studies of the physiological importance of the mineral elements in plants. The variation in potassium content of maize leaves during the day. New Phyt.37: 1–14. 1938.

    Article  CAS  Google Scholar 

  166. Pfeiffer, N. E. Anatomical study of plants grown under glasses transmitting light of various ranges of wave lengths. Bot. Gaz.85: 427–436. 1928.

    Article  Google Scholar 

  167. Pickett, W. F. andKenworthy, A. L. The relationship between structure, chlorophyll content and photosynthesis in apple leaves. Proc. Am. Soc. Hort. Sci.37: 371–373. 1940.

    CAS  Google Scholar 

  168. — andBirkeland, C. J. The influence of some spray materials on the internal structure and chlorophyll content of leaves. Kan. Agr. Exp. Sta., Tech. Bull.53: 1–54. 1942.

    Google Scholar 

  169. Popp, H. W. A physiological study of the effect of light of various ranges of wave length on the growth of plants. Am. Jour. Bot.13: 706–735. 1926.

    Article  CAS  Google Scholar 

  170. Post, K. Some effects of temperature and light upon the flower bud formation and leaf character of stocks (Mathiola incana). Proc. Am. Soc. Hort. Sci.33: 649–652. 1936.

    Google Scholar 

  171. Potapov, P. G. andStankov, N. T. O sutochnoi periodichnosti mineral ’nogo pitaniia. Doklady Akademii Nauk SSSR, Novaia seriia (Compt. Rend. Acad. Sci. USSR, nouv. ser.)2: 40–45. 1934.

    CAS  Google Scholar 

  172. Prianischnikov, D. Über physiologische Acidität von Ammoniumnitrat. Biochem. Zeits.182: 204–214. 1927.

    Google Scholar 

  173. —. Über die Ausscheidung von Ammoniak durch die Pflanzenwurzeln bei Saurevergiftung. Biochem. Zeits.193: 211–215. 1928.

    Google Scholar 

  174. —. Über den Einfluss des Entwickelungestadiums auf die Ausnutzung des Ammoniak und Nitratstickstoffs durch die Pflanzen. Trans. 3rd Int. Cong. Soil Sci. Vol.1: 207–209. 1935.

    Google Scholar 

  175. Priestley, J. H. The biology of the living chloroplast. New Phyt.28: 197–217. 1929.

    Article  Google Scholar 

  176. Pringsheim, E. Wasserbewegung und Turgorregulation in welkenden Pflanzen. Jahrb. Wiss. Bot.43: 89–144. 1906.

    Google Scholar 

  177. Raunkiaer. 1887. [Quoted by Fuller and Bakke, 1918; original in Danish.]

  178. Rippel, A. Der Einfluss der Bodentrockenheit auf den anatomischen Bau der Pflanzen insbesondere vonSinapsis alba, etc. Beih. Bot. Cent., Abt. 1,36: 187–260. 1919.

    Google Scholar 

  179. Rodrigues, A. Variacoes do recorte da folha da videira. Agronomica Lusitana3: 189–193. 1941.

    Google Scholar 

  180. Runyon, E. H. The organization of the creosote bush with respect to drought. Ecology15: 128–138. 1934.

    Article  Google Scholar 

  181. —. Ratio of water content to dry weight in leaves of the creosote bush. Bot. Gaz.97: 518–553. 1936.

    Article  CAS  Google Scholar 

  182. Sayre, J. D. Comparative transpiration of tobacco and mullein. Ohio Jour. Sci.19: 422–426. 1919.

    Google Scholar 

  183. —. The relation of hairy coverings to the resistance of leaves in transpiration. Ohio Jour. Sci.20: 55–86. 1920.

    Google Scholar 

  184. Scarth, G. W. Mechanism of action of light and other factors on stomatal movement. Plant Physiol.7: 481–504. 1932.

    PubMed  CAS  Google Scholar 

  185. Schiemann, E. Antirrhinum majus mut.filiforme, zugleich ein Beitrag zur Chimärenfrage. Zeits. Ind. Abs. Ver.79: 50–82. 1940.

    Article  Google Scholar 

  186. Schimper, A. F. W. I. Ueber Schutzmittel des Laubes gegen Transpiration, vornehmlich in der Flora Java’s. Monatsber. Berliner Akad. Wiss. Bd. VII. 1890.

  187. -. Plant geography upon a physiological basis. 839 pp. 1903.

  188. Schnee, L. Der Laubfall vonEuphoribia pulcherrima bei gesteigerter Bodenfeuchtigkeit. Gartenbauwiss.9: 154–156. 1934.

    Google Scholar 

  189. Schneider, K. Beeinflussung von N-Stoffwechsel und Stengelanatomie durch Ernahrung. Zeits. Bot.29: 545–569. 1936.

    Google Scholar 

  190. Schratz, E. Zum Vergleich der Transpiration xeromorpher und mesomorpher Pflanzen. Jour. Ecol.19: 292–296. 1931.

    Article  Google Scholar 

  191. Seiden, R. Vergleichende Untersuchungen über den Einfluss verschiedener ausserer Faktoren, insobesondere auf den Aschengehalt in den Pflanzen. Landw. Versuchs-Sta.104: 1–50. 1926.

    Google Scholar 

  192. Shantz, H. D. Drought resistance and soil moisture. Ecology8: 145–157. 1927.

    Article  Google Scholar 

  193. Shields, L. M. Am. Jour. Bot.38: 1951.

  194. Shirley, H. F. The influence of light intensity and light quality upon the growth of plants. Am. Jour. Bot.16: 354–390. 1929.

    Article  CAS  Google Scholar 

  195. —. Light as an ecological factor and its measurement. Bot. Rev.1: 355–381. 1935.

    Article  Google Scholar 

  196. Shope, Paul F. Stem and leaf structure of aspen at different altitudes in Colorado. Am. Jour. Bot.14: 116–119. 1927.

    Article  Google Scholar 

  197. Shreve, E. B. Seasonal changes in the water relations of desert plants. Ecology4: 266–292. 1923.

    Article  Google Scholar 

  198. Shull, C. A. Lateral water transfer in leaves ofGinkgo biloba. Plant Physiol.9: 387–389. 1934.

    PubMed  CAS  Google Scholar 

  199. Singh, B. N. andLal, K. N. Investigation of the effect of age on assimilation of leaves. Ann. Bot.49: 291–307. 1935.

    CAS  Google Scholar 

  200. Sinnott, E. W. andBailey, I. W. Investigations on the phylogeny of the angiosperms. V. Foliar evidence as to the ancestry and early climatic environment of the angiosperms. Am. Tour. Bot.2: 1–22. 1915.

    Article  Google Scholar 

  201. Smith, G. H. Anatomy of the embryonic leaf. Am. Jour. Bot.21: 194–209. 1934.

    Article  Google Scholar 

  202. Smith, T. J. Response of biennial sweet clover to moisture, temperature and length of day. Jour. Am. Soc. Agron.34: 865–876. 1942.

    Google Scholar 

  203. Soding, H. Über die Bedingungen für die Entstehung der Sonneblatter. Ber. Deut. Bot. Ges.52: 110–120. 1934.

    Google Scholar 

  204. Spalding, V. M. The creosote bush (Covillea tridentata) in its relation to water supply. Bot. Gaz.38: 122–138. 1904.

    Article  Google Scholar 

  205. —. Absorption of water by leaves. Bot. Gaz.41: 262–282. 1906.

    Article  Google Scholar 

  206. Spoehr, H. A. The carbohydrate economy of cacti. Carnegie Inst. Wash., Yearbook16: 73–80. 1917.

    Google Scholar 

  207. Stahl, E. Zur physiologie und Biologie der Exkrete. Flora113: 1–132. 1919.

    CAS  Google Scholar 

  208. Stanfield, J. F. Osmotic pressure of leaves ofPinus scopulorum, and certain environment factors. Bot. Gaz.93: 453–465. 1932.

    Article  Google Scholar 

  209. Steemann Nielsen, E. Über die Bedeutung der sogenannten xeromorphen Struktur im Blattbau der Pflanzen auf Nährstoffarmen Boden. Dansk Bot. Ark.10: 1–28. 1940.

    Google Scholar 

  210. Stoddart, L. A. Osmotic pressure and water content of prairie plants. Plant Physiol.10: 661–680. 1935.

    PubMed  CAS  Google Scholar 

  211. Swanson, A. F. Relation of leaf area to grain yield in sorghum. Jour. Am. Soc. Agron.33: 908–914. 1941.

    Google Scholar 

  212. Szymkiewicz, D. Badania ekologiczne nad gorskiemi roslinami. Kosmos (Lwow)51: 1–34. 1927.

    Google Scholar 

  213. Tellefsen, M. A. The relation of age to size in certain root cells and in vein islets of the leaves ofSalix nigra Marsh. Am. Jour. Bot.9: 121–139. 1922.

    Article  Google Scholar 

  214. Tetley, U. The development and cytology of the leaves of healthy and “silvered” Victoria plum trees. Ann. Bot.46: 633–652. 1932.

    Google Scholar 

  215. Thoday, D. The significance of reduction in the size of leaves. Jour. Ecol.19: 297–303. 1931.

    Article  Google Scholar 

  216. — andJones, K. M. Acid metabolism and respiration in succulent Compositae. Ann. Bot.3: 677–698. 1939.

    CAS  Google Scholar 

  217. Thut, F. Relative humidity variations affecting transpiration. Am. Jour. Bot.25: 589–595. 1938.

    Article  Google Scholar 

  218. Transeau, E. N. On the development of palisade tissue and resinous deposits in leaves. Science19: 866–867. 1904.

    Article  PubMed  Google Scholar 

  219. Tumanov, J. J. Ungenugende Wasserversorgung und das Welken der Pflanzen als Mittel zur Erhöhung ihrer Dürreresistenz. Planta3: 391–480. 1927.

    Article  Google Scholar 

  220. Turner, H. The ecology ofRhus toxicodendron. Trans. Ill. State Acad. Sci.15: 208–211. 1923.

    Google Scholar 

  221. Turner, T. W. Studies of the mechanism of the physiological effects of certain mineral salts in altering the ratio of top growth to root growth in seed plants. Am. Jour. Bot.9: 415–445. 1922.

    Article  CAS  Google Scholar 

  222. Turrell, F. M. The area of the internal exposed surface of dicotyledon leaves. Am. Jour. Bot.23: 255–264. 1936.

    Article  Google Scholar 

  223. —. The relation between chlorophyll concentration and the internal surface of mesomorphic and xeromorphic leaves grown under artificial light. Proc. Iowa Acad. Sci.46: 107–117. 1940a.

    Google Scholar 

  224. —. The relation of internal surface to intercellular space in foliage leaves. Science92: 244. 1940b.

    Article  PubMed  Google Scholar 

  225. —. A quantitative morphological analysis of large and small leaves of alfalfa with special reference to internal surface. Am. Jour. Bot.29: 400–415. 1942.

    Article  CAS  Google Scholar 

  226. Ulrich, A. Metabolism in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Am. Jour. Bot.29: 220–226. 1942.

    Article  CAS  Google Scholar 

  227. Ursprung, A. Osmotic quantities of plant cells in given phases. Plant Physiol.10: 115–133. 1935.

    PubMed  CAS  Google Scholar 

  228. Vesque, M. M. andViet, M. S. De l’influence du milieu sur la structure anatomique des vegetaux. Ann. Sci. Nat. VI. Bot.12: 176. 1881.

    Google Scholar 

  229. Volkens, G. Die Flora der ägyptisch-arabischen Wüste auf Grundlage anatomisch-physiologischer Forschungen. 1887.

  230. Wadleigh, C. H.,et al. The trend of starch reserves in bean plants before and after irrigation of a saline soil. Proc. Am. Soc. Hort. Sci.43: 201–209. 1943.

    CAS  Google Scholar 

  231. Wallace, R. H. andClum, H. H. Leaf temperatures. Am. Jour. Bot.25: 83–97. 1938.

    Article  Google Scholar 

  232. Warming, E. Oecology of plants. 1925.

  233. Watson, A. N. Further studies on the relation between thermal emissivity and plant temperatures. Am. Jour. Bot.21: 605–609. 1934.

    Article  Google Scholar 

  234. Watson, R. W. The mechanism of elongation in palisade cells. New Phyt.41: 206–221. 1942.

    Article  Google Scholar 

  235. Watson, W. Absorption of water by dead roots. Ann. Bot.8: 119–120. 1894.

    Google Scholar 

  236. Weaver, J. E. andMogensen, A. Relative transpiration of coniferous and broad-leaved trees in autumn and winter. Bot. Gaz.68: 393–424. 1919.

    Article  Google Scholar 

  237. —. Investigations on the root habits of plants. Am. Jour. Bot.12: 502–509. 1925.

    Article  Google Scholar 

  238. - andClements, F. E. Plant ecology. 520 pp. 1929.

  239. Welton, F. A. Lodging in oats and wheat. Bot. Gaz.85: 121–151. 1928.

    Article  Google Scholar 

  240. Westermaier, M. Ueber Bau und Funktion des pflanzlichen Hautgewebesystems. Jahrb. Wiss. Bot.14: ?. 1884.

  241. Wetzel, K. Die Wasseraufnahme der höheren pflanzengemässigter Klimate durch oberirdische Organe. Flora117: 221–269. 1924.

    Google Scholar 

  242. White, P. R. “Root pressure”—an unappreciated force in sap movement. Am. Jour. Bot.25: 223–227. 1938.

    Article  CAS  Google Scholar 

  243. Wiegand, K. M. The relation of hairy and cutinized coverings to transpiration. Bot. Gaz.49: 430–444. 1910.

    Article  Google Scholar 

  244. Wiesner, J. Grundversuche über den Einfluss der Luftbewegung auf die Transpiration der Pflanzen. Sitzungsber. Akad. Wiss., Wien, Abt. 1,96: 182. 1887.

    Google Scholar 

  245. Williams, H. F. Absorption of water by the leaves of common mesophytes. Jour. Elisha Mitchell Sci. Soc.48: 83–100. 1932.

    Google Scholar 

  246. Wood, J. G. The stomatal frequencies, transpiration and osmotic pressures of sclerophyll and tomentose-succulent leaved plants. Jour. Ecol.22: 69–87. 1934.

    Article  CAS  Google Scholar 

  247. Woodroof, J. G. andWoodroof, N. C. Pecan root growth and development. Jour. Agr. Res.49: 511–530. 1934.

    Google Scholar 

  248. Wylie, R. B. Relations between tissue organization and vein distribution in dicotyledon leaves. Am. Jour. Bot.26: 219–225. 1939.

    Article  Google Scholar 

  249. —. The role of the epidermis in foliar organization and its relations to the minor venation. Am. Jour. Bot.30: 273–280. 1943.

    Article  Google Scholar 

  250. —. Relations between tissue organization and vascularization in leaves of certain tropical and subtropical dicotyledons. Am. Jour. Bot.33:721–726. 1946.

    Article  Google Scholar 

  251. Yapp, R. H. Spiraea ulmaria L. and its bearing on the problem of xeromorphy in marsh plants. Ann. Bot.26: 815–870. 1912.

    Google Scholar 

  252. — andMason, U. C. The distribution of water in the shoots of certain herbaceous plants. Ann. Bot.46: 159–181. 1932.

    Google Scholar 

  253. Yates, R. C. andCurtis, J. T. The effect of sucrose and other factors on the shoot-root ratio of orchid seedlings. Am. Jour. Bot.36: 390–396. 1949.

    Article  CAS  Google Scholar 

  254. Yocum, L. W. The stomata and transpiration of oaks. Plant Physiol.10: 795–801. 1935.

    PubMed  CAS  Google Scholar 

  255. Yoshii, Y. andJimbo, T. Untersuchungen über die osmotischen Werte bei Pflanzen auf dem Berg Hakkôda. Sci. Repts. Tôhoku Imp. Univ. 4th Ser. (Biol.)6: 259–283. 1931.

    CAS  Google Scholar 

  256. Zalenski, V. Materials for the study of the quantitative anatomy of different leaves of the same plant. Mem. Polytech. Inst. Kiev.4: 1–204. 1904.

    Google Scholar 

  257. Zamfirescu, N. Cercetari asupra absorptiunii apei prin organele aeriene ale plantelor. Supl. Bul. Min. Agric. si Domeniilor (Bucharest)3: 1–105. 1931.

    Google Scholar 

  258. Zirkle, C. The plant vacuole. Bot. Rev.3: 1–30. 1937.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, L.M. Leaf xeromorphy as related to physiological and structural influences. Bot. Rev 16, 399–447 (1950). https://doi.org/10.1007/BF02869988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869988

Keywords

Navigation