Advertisement

The Botanical Review

, Volume 1, Issue 12, pp 467–496 | Cite as

Cytology of cereals

  • Hannah C. Aase
Article

Keywords

Chromosome Number Botanical Review Cytological Study Haploid Plant Chiasma Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Aase, H. C. The cytology ofTriticum, Secale, andAegilops hybrids with reference to phylogeny. Res. Stud. State Coll. Wash.2: 3–60. 1930.Google Scholar
  2. 2.
    Avdulov, N. Karyo-systematische Untersuchung der Familie Gramineen. Bull. Appl. Bot., Genet. and Plant-Breed. Leningrad, Suppl.43: 1–428. 1931.Google Scholar
  3. 3.
    Belling, J. Fracture of chromosomes in rye. Jour. Heredity16: 360. 1925.Google Scholar
  4. 4.
    Berg, K. H. Autosyndese inAegilops triuncialis L. ×Secale cereale. L. Zeits. Zücht. A.17: 55–69, 1931.Google Scholar
  5. 5.
    —. Cytologische Untersuchungen anTriticum turgidovillosum und seinen Eltern. Zeits. Induk. Abst. Vererb.67 (2): 342–373. 1934.CrossRefGoogle Scholar
  6. 6.
    —. Cytologische Untersuchungen an den Bastarden desTriticum turgidovillosum und an einer F1 Triticum turgidum ×villosum. III. Weitere Studien am fertilen konstanten ArtbastardTriticum turgidovillosum und seinen Verwandten. Zeits. Induk. Abst. Vererb.68 (1): 94–126. 1934.CrossRefGoogle Scholar
  7. 7.
    Bews, J. W. The world’s grasses. 1929.Google Scholar
  8. 8.
    Bleier, H. Untersuchungen über das Verhalten der verschiedenen Kernkomponenten bei der Reductionsteilung von Bastarden. La Cellule40: 85–144. 1930.Google Scholar
  9. 9.
    —. Genetische und zytologische Untersuchungen von Weizenstämmen (Triticum vulgare) aus Weizen-Roggen-Bastardierungen (Triticum vulgare ×Secale cereale). Zeits. Zücht. A.18: 191–211. 1933.Google Scholar
  10. 10.
    Chizaki, Y. Chromosome studies of F1Aegilops speltoides ×Trittcum monococcum. Bull. Utsunomiya Agr. Coll. Japan2: 43–47. 1932.Google Scholar
  11. 11.
    —. Another new haploid plant inTriticum monococcum L. Bot. Mag. Tokyo48: 621–628. 1934.Google Scholar
  12. 12.
    Darlington, C. D. The analysis of chromosome pairing inTriticum hybrids. Cytologia3: 21–25. 1931.Google Scholar
  13. 13.
    —. The origin and behaviour of chiasmata. VIII.Secale cereale (n, 8). Cytologia4: 444–452. 1933.Google Scholar
  14. 14.
    —. The origin and behavior of chiasmata. IX. Diploid and tetraploidAvena. Cytologia5: 128–134. 1933.Google Scholar
  15. 15.
    Dusseau, A. Étude cytologique d’un hybride de deuxTriticum vulgare Host, à phénotype deT. durum Desf. Cytologia5: 491–497. 1934.Google Scholar
  16. 16.
    Ekstrand, H. Ein Fall von erblicher Asyndese beiHordeum. Svensk. Bot. Tidskr.26: 292–302. 1932.Google Scholar
  17. 17.
    Emme, H. Beitrag zur Zytologie der pentaploiden Haferbastarde. Bull. Appl. Bot. Gen. and Plant-Breed., Ser. II.1: 169–176. 1932.Google Scholar
  18. 18.
    —. Karyosystematische Untersuchung der sectionEuavena Griseb. Bull. Appl. Bot., Genet. and Plant-Breed. II1: 147–168. 1932.Google Scholar
  19. 19.
    Favorsky, N. V. On the reduction division in the hybrid ofSecale cereale L. ×Agropyron cristatum (L.) Gaertn. in connection with the question of its sterility. Social. Grain Farming1935: 115–125. 1935.Google Scholar
  20. 20.
    Flaksberger, C. Über künstliche und natürliche Klassifikation des Weizens. Fedde Repertorium, Beiheft56: 102–123. 1929.Google Scholar
  21. 21.
    Florell, V. H. A cytologic study of wheat × rye hybrids and back crosses. Jour. Agr. Res.42: 341–362. 1931.Google Scholar
  22. 22.
    Gaines, E. F., andAase, H. C. A haploid wheat plant. Amer. Jour. Bot.13: 373–385. 1926.CrossRefGoogle Scholar
  23. 23.
    Gaiser, L. O. A list of chromosome numbers in angiosperms Genetica8: 401–484. 1926.Google Scholar
  24. 24.
    —. Chromosome numbers in angiosperms. II. Bibliog. Genetica6: 171–466. 1930.Google Scholar
  25. 25.
    —. Chromosome numbers in angiosperms. III. Genetica12: 162–260. 1930.CrossRefGoogle Scholar
  26. 26.
    —. Chromosome numbers in angiosperms. IV. Bibliog. Genetica10: 106–250. 1933.Google Scholar
  27. 27.
    Ghimpu, V. Recherches cytologiques sur les genresHordeum, Acacia, Médicago, Vités, etQuercus. Archiv. d’Anat. Micr.26: 135–234. 1930.Google Scholar
  28. 28.
    Griffee, F. Chromosome numbers in species ofHordeum. Univ. Minn. Stud. Biol. Sci.6: 319–331. 1927.Google Scholar
  29. 29.
    Gotoh, K. Further investigation on the chromosome number ofSecale cereale L. Jap. Jour. Genet.7: 172–182. 1932.CrossRefGoogle Scholar
  30. 30.
    Gurney, H. C. The cytology of wheat × rye hybrids of the 5th and 6th generation. Austral. Jour. Exp. Biol. and Med. Sci.11(2): 123–137. 1933.CrossRefGoogle Scholar
  31. 31.
    Håkansson, A. Zytologische Studien an compactoiden Typen vonTriticum vulgare. Hereditas17: 155–196. 1933.Google Scholar
  32. 32.
    Hasegawa, N. Cytological study on 8-chromosome rye. Cytologia6:68–77. 1934.Google Scholar
  33. 33.
    Hollingshead, L. The occurrence of unpaired chromosomes in hybrids between varieties ofTriticum vulgare. Cytologia3: 119–141. 1932.Google Scholar
  34. 34.
    Hosono, S. Karyogenetische Studien bei reinen Arten und Bastarden der Emmerreihe I. Reifungsteilungen. Jap. Jour. Bot.7: 301–322. 1935.Google Scholar
  35. 35.
    —. Studien über die I. Reifungsteilung bei einem tetraploiden Triticum-Bastard (T. persicum Vav. var.rubiginosum Zhuk.× T. aegilopoides Bal. var.boeoticum Perc). Jap. Jour. Genet.11: 18–29. 1935.CrossRefGoogle Scholar
  36. 36.
    Huskins, C. L. A cytological study of Vilmorin’s. unfixable dwarf wheat. Jour. Genet.25: 113–124. 1931.Google Scholar
  37. 37.
    — andHearne, E. M. Meiosis in asynaptic dwarf oats and wheat. Jour. Roy. Micr. Soc.53(2): 109–117. 1933.Google Scholar
  38. 38.
    — andSpier, J. D. The segregation of heteromorphic homologous chromosomes in pollen mother-cells ofTriticum vulgare. Cytologia5: 269–277. 1934.Google Scholar
  39. 39.
    Hutchinson, J. The families of flowering plants. Vol. II. Monocotyledons. 1935.Google Scholar
  40. 40.
    Johansen, Donald A. Haploids inHordeum vulgare. Proc. Nat. Acad. Sci.20: 98–100. 1934.PubMedCrossRefGoogle Scholar
  41. 41.
    Kagawa, F. A study on the phylogeny of some species inTriticum andAegilops, based upon the comparison of chromosomes. Jour. Coll. Agr. Imp. Univ. Tokyo10: 173–228. 1929.Google Scholar
  42. 42.
    —. Chromosome studies of a species cross inAegilops. Bull. Utsunomiya Agr. Coll.1: 57–60. 1931.Google Scholar
  43. 43.
    — andChizaki, Y. Cytological studies on the genus hybrids amongTriticum, Secale, andAegilops and the species hybrids inAegilops. Jap. Jour. Bot.7: 1–32. 1934.Google Scholar
  44. 44.
    Katayama, Y. Variation in the number of bivalent chromosomes in the F1 hybrids betweenTriticum durum andAegilops ventricosa. Bot. Mag. Tokyo45: 424–445. 1931.Google Scholar
  45. 45.
    —. Crossing experiments in certain cereals with special reference to different compatibility between the reciprocal crosses. Mem. Coll. Agr. Kyoto Imp. Univ.27: 1–75. 1933.Google Scholar
  46. 46.
    —. Haploid formation by X-rays inTriticum monococcum. Cytologia5: 235–237. 1934.Google Scholar
  47. 47.
    —. Karyological comparisons of haploid plants from octoploidAegilotricum and diploid wheat. Jap. Jour. Bot.7: 349–380. 1935.Google Scholar
  48. 48.
    —. On a chromosomal variant induced by X-ray treatment inTriticum monococcum. Proc. Imp. Acad. Tokyo.11: 11–111. 1935.Google Scholar
  49. 49.
    Kattermann, G. Die cytologischen Verhältnisse einiger Weizenroggen-Bastarde und ihrer Nachkommenschaft (F2). Der Züchter6:97–107. 1934.Google Scholar
  50. 50.
    —. Entstehung und Züchtung intermediär-konstanter Weizenroggen-Bastarde. Der Züchter6: 145–146. 1934.Google Scholar
  51. 51.
    Kihara, H. Ueber cytologische Studien bei einigen Getreidearten I. Spezies-Bastarde des Weizens und Weizenroggen-Bastarde. Bot. Mag. Tokyo.33: 17–38. 1919.Google Scholar
  52. 52.
    —. Genomanalyse beiTriticum undAegilops. II.Aegilotricum undAegilops cylindrica. Cytologia2: 106–156. 1931.Google Scholar
  53. 53.
    —. Weitere Untersuchungen uber die pentaploidenTriti- cum-Bastarde. II. Japan Jour. Bot.6: 35–62. 1932.Google Scholar
  54. 54.
    — undKatayama, Y. Genomanalyse beiTriticum undAegilops. III. Zur Entstehungsweise eines neuen konstanten oktoploidenAegilotricum. Cytologia2: 234–255. 1931.Google Scholar
  55. 55.
    —. Reifungsteilungen bei dem haploidenTriticum monococcum. Agric. and Horticulture8: 1–17. 1933.Google Scholar
  56. 56.
    — undLilienfeld, F. Genomanalyse beiTriticum undAegilops. IV. Untersuchungen anAegilops ×Triticum undAegilops × Aegilops-Basterden. Cytologia3: 384–456. 1932.Google Scholar
  57. 57.
    —. Genomanalyse beiTriticum undAegilops. V.Triticum Timopheevi Zhuk. Cytologia (Tokyo)6: 87–122. 1934.Google Scholar
  58. 58.
    —. Kerneinwanderung und Bildung syndiploider Pollenmutterzellen bei dem F1-BastardT. aegilopoides ×Ae. squarrosa. Jap. Jour. Genet.10: 1–28. 1934.CrossRefGoogle Scholar
  59. 59.
    —. Genomanalyse beiTriticum undAegilops. VI. Weitere Untersuchungen anAegilops ×Triticum undAegilops × Aegilops-Bastarden. Cytologia6: 195–216. 1935.Google Scholar
  60. 60.
    - und Wakakuwa, Sh. Uber die Zwergpflanzen in der Nachkommenschaft der pentaploiden VerbindungTriticum polonicum ×Triticum spelta. Jap. Jour. Genet.5. 1930.Google Scholar
  61. 61.
    —. Weitere Untersuchungen über die pentaploiden Triticum-Bastarde. IV. Jap. Jour. Bot.7: 381–387. 1935.Google Scholar
  62. 62.
    — undYamamoto, Y. Weitere Untersuchungen über die pentaploiden Triticum-Bastarde. III. Jap. Jour. Bot.6: 411–424. 1933.Google Scholar
  63. 63.
    Kostoff, D.Triticum (dicoccum ×monococcum) ×Triticum vulgare, triple hybrid with 42 chromosomes. Cytologia3: 186–187. 1932.Google Scholar
  64. 64.
    —. Studies on polyploid plants. V. FertileTriticum vulgare-monococcum hybrids. Dokl. Akad. Nauk. SSSR (Compt. Rend. Acad. Sci. URSS)1: 155–159. 1935.Google Scholar
  65. 65.
    Lebedeff, V. N. Neue Fälle der Formierung von Amphidiploiden in Weizen-Roggen-Bastarden. Zeits. Zücht., A.19: 509–525. 1934.Google Scholar
  66. 66.
    Lewitsky, G. A. The morphology of chromosomes. Bull. Appl. Bot., Genet. and Plant-Breed.27(1): 19–174. 1931.Google Scholar
  67. 67.
    — andAraratian, G. A. Transformations of chromosomes under the influence of X-rays. Bull. Appl. Bot., Genet. and Plant-Breed.27(1): 265–303. 1931.Google Scholar
  68. 68.
    — undBenetzkaja, G. K. Cytology of the wheat-rye amphidiploids. Bull. Appl. Bot., Genet. and Plant-Breed.27(1): 241–264. 1931.Google Scholar
  69. 69.
    —,Melnikov, A. N. andTitova, N. N. The cytology of the offspring of the 16-chromosome rye. Trudy Lab. Gen. Akad. Nauk. SSSR. (Bull. Lab. Gen. Acad. Sci. USSR.)9: 89–96. 1932.Google Scholar
  70. 70.
    Longley, A. E. andSando, W. J. Nuclear divisions in the pollen mother cells ofTriticum, Aegilops, andSecale and their hybrids. Jour. Agr. Res.40: 683–719. 1930.Google Scholar
  71. 71.
    Malzew, A. I. Wild and cultivated oats (Sectio Euavena Griseb.). Bull. Appl. Bot., Genet. and Plant-Breed. Suppl.38: 1–522. 1930.Google Scholar
  72. 72.
    Mather, K. Chromosome behavior in a triploid wheat hybrid. Zeits. Zellforsch. Mikr. Anat.23: 117–138. 1935.CrossRefGoogle Scholar
  73. 73.
    Matzumoto, K. Zur Kritik der Kryptogonomerie-Theorie von Bleier. Mem. Coll. Agr., Kyoto Imp. Univ.25: 1–10. 1933.Google Scholar
  74. 74.
    Meister, G. K. Das Problem der Spezies Bastardierung im Lichte der experimentellen Methode. Zeits. Indukt. Abst. Vererb. Suppl.2: 1094–1117. 1928.Google Scholar
  75. 75.
    Miczynski, K. Genetic studies in the genusAegilops. II. The morphology and cytology of the interspecific hybrids. Bull. Acad. Polon. Sci. Lettres. Ser. B.1: 51–83. 1931.Google Scholar
  76. 76.
    Miege, E. andSimonet, M. Étude caryologique de types durum apparus dans le croisementTriticum vulgare var.alborubrum ×T. vulgare var.oasicolum. Compt. Rend. Acad. Sci. Paris197: 1751–1753. 1933.Google Scholar
  77. 77.
    Moriya, M. Chromosomenzahlen und Fertilitätsverhältnisse in der Nachkommenschaft eines hypopentaploiden Triticum-Bastards mit 34 somatischen Chromosomen. Jap. Jour. Genet.8: 34–47. 1932.CrossRefGoogle Scholar
  78. 78.
    Müntzing, Arne. Triple hybrids between rye and two wheat species. Hereditas20: 137–160. 1935.CrossRefGoogle Scholar
  79. 79.
    Namikawa, S. andKawakami, J. On the occurrence of haploid, triploid and tetraploid plants in twin seedlings of common wheat. Proc. Imp. Acad. Tokyo.10: 668–671. 1934.Google Scholar
  80. 80.
    Nishiyama, I. The genetics and cytology of certain cereals. I. Morphological and cytological studies on triploid, pentaploid and hexaploidAvena hybrids. Jap. Jour. Genet.5: 1–48. 1929.CrossRefGoogle Scholar
  81. 81.
    —. The genetics and cytology of certain cereals. IV. Further studies on fatuoid oats. Jap. Jour. Genet.8: 107–124. 1933.CrossRefGoogle Scholar
  82. 82.
    —. The chromosome number in the progenies of interspecific hybrids ofAvena. Jap. Jour. Genet.8: 275–276. 1933.CrossRefGoogle Scholar
  83. 83.
    —. The genetics and cytology of certain cereals. V. On the occurrence of an unexpected diploid in the progeny of pentaploidAvena hybrids. Cytologia5: 146–148. 1933.Google Scholar
  84. 84.
    -. The genetics and cytology of certain cereals. VI. Chromosome behavior and its bearing on inheritance in triploidAvena hybrid. Mem. Coll. Agr. Kyoto Imp. Univ. 32. 157 pp. 1934.Google Scholar
  85. 85.
    —. The genetics and cytology of certain cereals. VII. Genetical significance of the C-chromosome in hexaploidAvena species. Jap. Jour. Bot.7: 453–469. 1935.Google Scholar
  86. 86.
    — andKihara, H. The genetics and cytology of certain cereals. III. Different compatibility in reciprocal crosses ofAvena, with special reference to tetraploid hybrids between hexaploid and diploid species. Jap. Jour. Bot.6: 245–305. 1932.Google Scholar
  87. 87.
    Oehler, E. Untersuchungen an drei neuen konstanten additiven Aegilops-Weizenbastarden. Der Züchter6: 263–270. 1934.Google Scholar
  88. 88.
    —. Untersuchungen anAegilops-Haynaldia- undTriticum Haynaldia-Bastarden. Zeits. Induk. Abst. Vererb.68: 187–208. 1935.CrossRefGoogle Scholar
  89. 89.
    Percival, J. The wheat plant. 1921.Google Scholar
  90. 90.
    —. Cytological studies of some hybrids ofAegilops sp. × wheats, and of some hybrids between different species ofAegilops. Jour. Genet.22: 201–278. 1930.Google Scholar
  91. 91.
    —. Cytological studies of some wheat andAegilops hybrids. Ann. Botany46: 479–501. 1932.Google Scholar
  92. 92.
    Peto, F. H. Cytological studies in the genusAgropyron. Canad. Jour. Res.3: 428–448. 1930.Google Scholar
  93. 93.
    —. The effect of ageing and heat on the chromosomal mutation rates in maize and barley. Canad. Jour. Res.9: 261–264. 1933.Google Scholar
  94. 94.
    Philp, J. The genetics and cytology of some interspecific hybrids ofAvena. Jour. Genet.27: 133–179. 1933.Google Scholar
  95. 95.
    Plotnikowa, T. W. Zytologische Untersuchungen an hyperchromosomigen Weizen-Roggen-Bastarden. Zeits. Indukt. Abst. Vererb.66: 404–424. 1934.CrossRefGoogle Scholar
  96. 96.
    Powers, L. Cytologic and genetic studies of variability of strains of wheat derived from interspecific crosses. Jour. Agr. Res.44: 797–831. 1932.Google Scholar
  97. 97.
    Sakamura, T. Kurze Mitteilung über die Chromosomenzahlen und des Verwandschaftsverhältnisse der Triticum-Arten. Bot. Mag. (Tokyo)32: 151–154. 1918.Google Scholar
  98. 98.
    Sando, W. J. Hybrids of wheat, rye,Aegilops andHaynaldia. A series of 122 intra- and inter-generic hybrids shows wide variations in fertility. Jour. Heredity26: 229–232. 1935.Google Scholar
  99. 99.
    Sapéhin, A. A. Röntgen-Mutationen beim Weizen (Triticum vulgare). Der Züchter2: 257–259. 1930.Google Scholar
  100. 100.
    —. Cytological investigation ofTriticum ×A gropyron hybrids. Bot. Zhurn. SSSR. (Jour. Bot. URSS.)20: 119–125. 1935.Google Scholar
  101. 101.
    —. Rentgenomutatsii tverdoi pshenitsy (X-ray mitations in Durum-wheat). Bot. Zhurn. SSSR. (Jour. Bot. URSS.)20(1): 3–9. 1935.Google Scholar
  102. 102.
    Sax, K. Variation in chiasma frequencies inSecale, Vicia, andTradescantia. Cytologia6: 289–293. 1935.Google Scholar
  103. 103.
    —. The cytological analysis of species-hybrids. Bot. Rev.1: 100–117. 1935.Google Scholar
  104. 104.
    Schiemann, E. Entstehung der Kulturpflanzen. Handb. Vererbungswiss.3(15): I-IX, 1–377. 1932.Google Scholar
  105. 105.
    Senjaninova-Korczagina, M. Karyo-systematical investigation of the genusAegilops L. Bull. Appl. Bot., Genet. and Plant-Breed.II (1): 1–90. 1932.Google Scholar
  106. 106.
    Spier, J. D. Chiasma frequency in species and species hybrids ofAvena. Canad. Jour. Res.11: 347–361. 1934.Google Scholar
  107. 107.
    Stadler, L. J. On the genetic nature of induced mutation in plants. Proceed. Sixth Intern. Congress. Genet.1: 274–294. 1932.Google Scholar
  108. 108.
    Thompson, W. P. Shriveled endosperm in species crosses in wheat, its cytological causes and genetical effects. Genetics15: 99–113. 1930.PubMedGoogle Scholar
  109. 109.
    —. Chromosome homologies in wheat, rye, andAegilops. Canad. Jour. Res.4: 624–634. 1931.Google Scholar
  110. 110.
    —. Cytology and genetics of crosses between fourteen- and seven-chromosome species of wheat. Genetics16: 309–324. 1931.PubMedGoogle Scholar
  111. 111.
    — andArmstrong, J. M. Studies on the failure of hybrid germ cells to function in wheat species crosses. Canad. Jour. Res.6: 362–373. 1932.Google Scholar
  112. 112.
    —,Arnason, T. J. andLove, R. M. Some factors in the different chromosome sets of common wheat. Canad. Jour. Res.12: 335–345. 1935.Google Scholar
  113. 113.
    — andRobertson, H. T. Cytological irregularities in hybrids between species of wheat with the same chromosome number. Cytologia1: 252–262. 1930.Google Scholar
  114. 114.
    Tischler, G. Pflanzliche Chromosomen-Zahlen. Tabulae Biol.4: 1–83. 1927.Google Scholar
  115. 115.
    —. Pflanzliche Chromosomen-Zahlen. Tabulae Biol.7: 109–226. 1931.Google Scholar
  116. 116.
    Tschermak, E. V. Neue Beobachtungen am fertilen ArtbastardTriticum turgidovillosum. Ber. Deut. Bot. Ges.48: 400–407. 1930.Google Scholar
  117. 117.
    — undBleier, H. Über fruchtbare Aegilops-Weizenbastarde. Ber. Deut. Bot. Ges.44: 110–131. 1926.Google Scholar
  118. 118.
    Vakar, B. A. Cytological study of the interspecific hybrids of the genusTriticum. Bull. App. Bot., Genet. and Plant-Breed. II. (1): 189–241. 1932.Google Scholar
  119. 119.
    —. Cytologische Untersuchungen über F1 der Rassen- und Artbastarde des Weizens. Angew. Bot.15: 203–224. 1933.Google Scholar
  120. 120.
    — andKrot, E. G. A cytological study of constant wheatrye hybrids. Cytologia5: 395–416. 1934.Google Scholar
  121. 121.
    — andBrekina, L. A. Zytologische Unter-suchungen über Ft der konstanten Bastarde zwischenTriticum vulgare Vill. × cdurum Desf. Zeits. Zücht., A.17: 451–473. 1932.Google Scholar
  122. 122.
    Wakakuwa, S. Embryological studies on the different seed-development in reciprocal interspecific crosses of wheat. Jap. Jour. Bot.7: 151–185. 1934.Google Scholar
  123. 123.
    Watkins, A. E. The wheat species: a critique. Jour. Genet.23: 173–263. 1930.CrossRefGoogle Scholar
  124. 124.
    Yamaski, Y. The haploid plant of common wheat,Triticum vulgare Host. Cytologia5: 305–307. 1934.Google Scholar
  125. 125.
    Yamashita, K. Karyologische Untersuchungen bei einem triploiden Triticum-Bastard und seiner Nachkommenschaft. Bot. and Zool.2: 1325–1336. 1934.Google Scholar

Copyright information

© The New York Botanical Garden 1935

Authors and Affiliations

  • Hannah C. Aase
    • 1
  1. 1.State College of WashingtonUSA

Personalised recommendations