Advertisement

Journal of Chemical Sciences

, Volume 109, Issue 6, pp 497–507 | Cite as

Capped semiconductor colloids: Synthesis and photochemistry of CdS capped SnO2 nanocrystallites

  • Robert Kennedy
  • Ignacio Martini
  • Greg Hartland
  • Prashant V Kamat
Photochemical Conversion And Storage Of Solar Energy

Abstract

Cds-capped SnO2 (CdS@SnO2) and SiO2 (CdS@SiO2) colloids of 50–80 Å in diameter have been prepared in aqueous medium. Significant quenching of CdS emission is observed in the CdS@SnO2 system as the electrons are injected from the excited CdS shell into the SnO2 core. Photoinduced charge separation in this system also results in transient bleaching in the 450 nm region. Picosecond laser flash photolysis studies of composite semiconductor nanoclusters that highlight the effect of the metal oxide core on the photophysical properties of the outer CdS shell are described.

Keywords

CdS-capped SnO2 and SiO2 colloids composite semiconductor systems emission properties molecular devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kamat P V and Vinodgopal K 1996 InFine Particles Science and Technology: From Micro to Nanoparticles (ed.) E. Pelizzetti, Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 303.Google Scholar
  2. 2.
    Kamat P V 1996 InNanocrystalline semiconductor materials (eds) P V Kamat and D Meisel, Elsevier Science, AmsterdamGoogle Scholar
  3. 3.
    Nozik A J 1977Appl. Phys. Lett.,30 567CrossRefGoogle Scholar
  4. 4.
    Gruzdkov Y A, Savinov E N, Korolkov V V and Parmon V N 1988React. Kinet. Catal. Lett.,36 395CrossRefGoogle Scholar
  5. 5.
    Gerischer H and Lübke M 1986J. Electroanal. Chem. Interfacial Electrochem,204 225Google Scholar
  6. 6.
    Vogel R, Pohl K and Weller H 1990Chem. Phys. Lett.,174 241CrossRefGoogle Scholar
  7. 7.
    Kohtani S, Kudo A and Sakata T 1993Chem. Phys. Lett.,206 166CrossRefGoogle Scholar
  8. 8.
    Vogel R, Hoyer P and Weller H 1994J. Phys. Chem.,98 3183CrossRefGoogle Scholar
  9. 9.
    Hotchandani S and Kamat P V 1992J. Phys. Chem.,96 6834CrossRefGoogle Scholar
  10. 10.
    Liu D and Kamat P V 1993J. Phys. Chem.,97 10769CrossRefGoogle Scholar
  11. 11.
    Liu D and Kamat P V 1993J. Electroanal. Chem. Interfacial Electrochem,347 451Google Scholar
  12. 12.
    Hotchandani S and Kamat P V 1992Chem. Phys. Lett.,191 320CrossRefGoogle Scholar
  13. 13.
    Serpone N, Borgarello E and Grätzel M 1984J. Chem. Soc., Chem. Commun, 342Google Scholar
  14. 14.
    Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E and Hidaka H 1995J. Photochem. Photobiol., A: Chem.,85 247CrossRefGoogle Scholar
  15. 15.
    Vinodgopal K and Kamat P V 1995Environ. Sci. Technol.,29 841CrossRefGoogle Scholar
  16. 16.
    Vinodgopal K, Bedja I and Kamat P V 1996Chem. Mater.,8 2180CrossRefGoogle Scholar
  17. 17.
    Tennakone K, Iieperuma O A, Bandara J M S and Kiridena W C B 1992Semicond. Sci. Technol.,7 423CrossRefGoogle Scholar
  18. 18.
    Papp J, Soled S, Dwight K and Wold A 1994Chem. Mater.,6 496CrossRefGoogle Scholar
  19. 19.
    Anderson C and Bard A J 1995J. Phys. Chem.,99 9882CrossRefGoogle Scholar
  20. 20.
    Fu X, Clark L A, Yang Q and Anderson M A 1996Environ. Sci. Technol.,30 647.CrossRefGoogle Scholar
  21. 21.
    Trimoto T, Ito S, Kuwabata S and Yoneyama H 1996Environ. Sci. Technol.,30 1275CrossRefGoogle Scholar
  22. 22.
    Spanhel L, Weller H and Henglein A 1987J. Am. Chem. Soc.,109 6632CrossRefGoogle Scholar
  23. 23.
    Gopidas K R, Bohorquez M and Kamat P V 1990J. Phys. Chem.,94 6435CrossRefGoogle Scholar
  24. 24.
    Zhou H S, Honma I and Komiyama H 1993J. Phys. Chem.,97 895CrossRefGoogle Scholar
  25. 25.
    Spanhel L, Henglein A and Weller H 1987Ber. Bunsenges. Phys. Chem.,91 1359Google Scholar
  26. 26.
    Rabani J 1989J. Phys. Chem.,93 7707CrossRefGoogle Scholar
  27. 27.
    Kamat P V and Patrick B 1992J. Phys. Chem.,96 6829CrossRefGoogle Scholar
  28. 28.
    Henglein A, Gutierrez M, Weller H, Fojtik A and Jirkovsky J 1989Ber. Bunsenges. Phys. Chem.,93 593Google Scholar
  29. 29.
    Bedja I and Kamat P V 1995J. Phys. Chem.,99 9182CrossRefGoogle Scholar
  30. 30.
    Haesselbarth A, Eychmueller A, Eichberger R, Giersig M, Mews A and Weller H 1993J. Phys. Chem.,97 5333CrossRefGoogle Scholar
  31. 31.
    Kamalov V F, Little R, Logunov S L and El-Sayed M A 1996J. Phys. Chem.,100 6381CrossRefGoogle Scholar
  32. 32.
    Kietzmann R, Willig F, Weller H, Vogel R, Nath D N, Eichberger R, Liska P and Lehnert J 1991Mol. Cryst. Liq. Cryst.,194 169CrossRefGoogle Scholar
  33. 33.
    Evans J E, Springer K W and Zhang J Z 1994J. Chem. Phys.,101 6222CrossRefGoogle Scholar
  34. 34.
    Kortan A R, Hull R, Opila R L, Bawendi M G, Steigerwald M L, Carroll P J and Brus L E 1990J. Am. Chem. Soc.,112 1327CrossRefGoogle Scholar
  35. 35.
    Eychmueller A, Vobmeyer T, Mews A and Weller H 1994J. Lumin.,58 223CrossRefGoogle Scholar
  36. 36.
    Zhou H S, Sasahara H, Honma I, Komiyama H and Haus J W 1994Chem. Mater.,6 1534CrossRefGoogle Scholar
  37. 37.
    Zhou H S, Honma I, Haus J W, Sasabe H and Komiyama H 1996J. Lumin.,70 21CrossRefGoogle Scholar
  38. 38.
    Haus J W, Zhou H S, Honma I and Komiyama H 1993Phys. Rev.,47 1359CrossRefGoogle Scholar
  39. 39.
    Ebbesen T W 1988Rev. Sci. Instrum.,59 1307CrossRefGoogle Scholar
  40. 40.
    Kamat P V, Ebbesen T W, Dimitrijevic N M and Nozik A J 1989Chem. Phys. Lett.,157 384CrossRefGoogle Scholar
  41. 41.
    Rossetti R and Brus L 1982J. Phys. Chem.,86 4470CrossRefGoogle Scholar
  42. 42.
    Chestnoy N, Harris T D, Hull R and Brus L E 1986J. Phys. Chem.,90 3393CrossRefGoogle Scholar
  43. 43.
    Kamat P V, Dimitrijevic N M and Fessenden R W 1987J. Phys. Chem.,91 396CrossRefGoogle Scholar
  44. 44.
    Haase M, Weller H and Henglein A 1988J. Phys. Chem.,92 4706CrossRefGoogle Scholar
  45. 45.
    Henglein A, Kumar A, Janata E and Weller H 1986Chem. Phys. Lett.,132 133CrossRefGoogle Scholar
  46. 46.
    Banyai L and Koch S W 1986Phys. Rev. Lett.,57 2722CrossRefGoogle Scholar
  47. 47.
    Liu C and Bard A J 1989J. Phys. Chem.,93 3232CrossRefGoogle Scholar
  48. 48.
    Kamat P V, Dimitrijevic N M and Nozik A J 1989J. Phys. Chem.,93 2873CrossRefGoogle Scholar
  49. 49.
    Hilinski E F, Lucas P A and Wang Y 1988J. Chem. Phys.,89 3435CrossRefGoogle Scholar
  50. 50.
    Wang Y, Suna A, McHugh J, Hilinski E F, Lucas P A and Johnson R D 1990J. Chem. Phys.,92 6927CrossRefGoogle Scholar
  51. 51.
    Colvin V L and Alivisatos A P 1992J. Chem. Phys.,97 730.CrossRefGoogle Scholar
  52. 52.
    Luangdilok C, Lawless D and Meisel D 1996 InFine Particles Science and Technology (ed.) E Pelizzatti, Kluwer Academic Publishers, Boston, p. 457Google Scholar

Copyright information

© the Indian Academy of Sciences 1997

Authors and Affiliations

  • Robert Kennedy
    • 1
  • Ignacio Martini
    • 1
  • Greg Hartland
    • 1
  • Prashant V Kamat
    • 2
  1. 1.Department of ChemistryUniversity of Notre DameNotre DameUSA
  2. 2.Radiation LaboratoryUniversity of Notre DameNotre DameUSA

Personalised recommendations