Folia Microbiologica

, Volume 13, Issue 5, pp 373–378 | Cite as

Estimation of pathways of glucose catabolism inRhodotorula gracilis

  • M. Höfer


The metabolic pathways of glucose catabolism inRhodotorula gracilis were studied by means of specifically labelled14C-d-glucose. The presented results indicate that the pentose phosphate cycle is the main pathway of glucose breakdown. The additional pathway, presumably an incomplete sequence of glycolytic reactions operates to a lesser extent. A rough quantitative estimate shows that 60–80% of the assimilated glucose is routed through the pentose phosphate cycle. The lack of metabolic activity under anacrobic conditions is assumed to be caused by a gap in the enzyme sequence of glycolysis between glyceraldehyde-3-phosphate and pyruvate.


Xylitol Cell Lipid Glucose Catabolism Pentose Phosphate Cycle Conventional Manometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blinc, M., Hočevar, B.:Fettanreichung in Rhodotorula gracilis. Monatshefte für Chemie 84: 1127, 1953.CrossRefGoogle Scholar
  2. Brady, R. J., Chambliss, G. H.:The lack of phosphofructokinase activity in several species of Rhodotorula. Biochem. Biophys. Res. Commun. 29: 343, 1967.PubMedCrossRefGoogle Scholar
  3. Entenman, C.:General procedures for separating lipid components of tissue. In:Methods in Enzymology, ed. S. P. Colowick and N. O. Kaplan. Vol. III. Academic Press. Inc., 1957.Google Scholar
  4. Höfer, M., Kotyk, A.:Tight coupling of monosaccharide transpert and metabolism in Rhodotorula gracilis. Folia Microbiol. 13: 197, 1968.CrossRefGoogle Scholar
  5. Katz, J., Rognstad, R.:The metabolism of tritiated glucose by rat adipose tissue. J. biol. Chem. 241: 3600, 1966.PubMedGoogle Scholar
  6. Kleinzeller, A., Šlechta, L.:Glucose metabolism in the yeast Rhodotorula gracilis. I. Effect of enzymatic inhibitors. (In Czech.) Chem. listy 48: 602, 1954.Google Scholar
  7. Kotyk, A., Höfer, M.:Uphill transport of sugars in the yeast Rhodotorula gracilis. Biochim. Biophys. Acta 102: 410, 1965.PubMedCrossRefGoogle Scholar
  8. Landau, B. R., Bartsch, G. E., Katz, J., Wood, H. G.:Estimation of pathway contributions to glucose metabolism and of the rate of isomerization of hexose-6-phosphate. J. biol. Chem. 239: 686, 1964.PubMedGoogle Scholar
  9. Litchfield, J. H., Ordal, Z. J.:The oxidative metabolism of Rhodotorula gracillis. Can. J. Microbiol. 4: 205, 1958.PubMedCrossRefGoogle Scholar
  10. Wang, C. H., Krackov, J. K.:The catabolic fate of glucose in Bacillus subtilis. J. biol. Chem. 237: 3614, 1962.PubMedGoogle Scholar
  11. Wang, C. H., Stern, I., Gilmore, C. M., Klungsoyr, S., Reed, D. J., Bialy, J. J., Christensen, B. E., Cheldelin, V. H.:Comparative study of glucose catabolism by the respirometric method. J. Bacteriol. 76: 207, 1958.PubMedGoogle Scholar
  12. Wood, H. G., Katz, J., Landau, B. R.:Estimation of pathways of carbohydrate metabolism. Biochem. Z. 338: 809, 1963.PubMedGoogle Scholar

Copyright information

© Academia, nakladateletví Československé akademie věd 1968

Authors and Affiliations

  • M. Höfer
    • 1
  1. 1.Laboratory for Cell Membrane Transport, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague

Personalised recommendations