Folia Microbiologica

, Volume 15, Issue 4, pp 259–266 | Cite as

Importance of the generation time in microbiological experiments

  • S. Horváth


The bacterial and tissue cells can grow in batch and continuous culture. In batch culture the cells have different physiological states during incubation. The generation time changes from time to time during growth, except in the exponential phase. In continuous culture the cell growth takes place under steady-state conditions. In different steady-states the generation times reached remain constant at a certain level. This paper presents evidence of how the generation time influences the cell size, the chain formation, the multiplication of viruses, the development of competence both in transformation and transfection and the quantitative changes of lytic factor. In the experiments it is necessary to give the values of the generation times. This parameter helps the experimenters to compare the results and to avoid some errors in their conclusions.


Bacillus Subtilis Generation Time Continuous Culture Phage Particle Burst Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braun, W.:Bacterial genetics, p. 239. W. B. Saunders Company, Philadelphia & London, 1965.Google Scholar
  2. Bryson, V., Szybalski, W.:Microbial selection. Science, 116: 45, 1952.PubMedCrossRefGoogle Scholar
  3. Ecker, R. E., Schaechter, M.:Bacterial growth under conditions of limited nutrition. Ann. N. Y. Acad. Sci. 102: 549, 1963.CrossRefGoogle Scholar
  4. Herbert, D., Eisworth, R., Telling, R. C.:The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol. 14: 601, 1956.PubMedGoogle Scholar
  5. Hershey, A. D., Bronfenbrenner, J.:Factors limiting bacterial growth. J. gen. Physiol. 21: 721, 1938.CrossRefGoogle Scholar
  6. Horváth, S.:A new sensitive method of the rolling drum type for influenza virus titration. Acta Microbiol. Acad. Sci. hung. 1: 481, 1954.PubMedGoogle Scholar
  7. Horváth, S.:A quantitative semi-micro tissue culture method and its use in microbiology II. Use of the method in titrating the virus of Aujeszky disease. Acta Microbiol. Acad. Sci. hung. 6: 5, 1959.PubMedGoogle Scholar
  8. Horváth, S.:Development of competence in cultures of Bacillus subtilis inoculated with different numbers of bacteria. J. gen. Microbiol. 48: 215, 1967.PubMedGoogle Scholar
  9. Horváth, S.:Competence in Bacillus subtilis transformation system. J. gen. Microbiol. 51: 85, 1968a.PubMedGoogle Scholar
  10. Horváth, S.:Lytic factor and competence in Bacillus subtilis. Acta Microbiol. Acad. Sci. hung. 15: 173, 1968b.PubMedGoogle Scholar
  11. Horváth, S., Alföldi, L.:A new and sensitive method of phage titration on plastic trays. Acta Microbiol. Acad. Sci. hung. 1: 495, 1954.PubMedGoogle Scholar
  12. Horváth, S., Balázs, V.:A quantitative semi-microtissue culture method and its use in microbiology I. Quantitative semi-micro tissue culture method. Acta Microbiol. Acad. Sci. hung. 5: 415, 1958.Google Scholar
  13. Luria, S. E., Delbrück, M. E.:Mutation of bacteria from virus sensitivity to virus resistance. Genetics, 28: 491, 1943.PubMedGoogle Scholar
  14. Maaløe, O., Kjeldgaard, N. O.:Control of macromolecular synthesis. W. A. Benjamin, Inc. New York, Amsterdam, 1966.Google Scholar
  15. Mandell, J. D., Hershey, A. D.:A fractionating column for analysis of nucleic acids. Anal. Biochem. 1: 66, 1960.PubMedCrossRefGoogle Scholar
  16. Meyrath, J.:Interdependence of inoculum size, method of cultivation and substrate composition in amylase production and growth of Aspergillus oryzae. Zbl. Bakt. Parasit. Inf. Hyg. 119: 53, 1965.Google Scholar
  17. Monod, J.:Recherches sur la croissance des cultures bacteriennes. Paris. Herman & Cie. 1942.Google Scholar
  18. Monod, J.:La technique de culture continue, théorie et applications. Ann. Inst. Pasteur 79: 390, 1950.Google Scholar
  19. Novick, A., Szilard, L.:Description of the chemostat. Science 112: 715, 1950.PubMedCrossRefGoogle Scholar
  20. Okubo, S., Strauss, B., Stodolsky, M.:The possible role of recombination in the infection of competent Bacillus subtilis by bacteriophage deoxyribonucleic acid. Virology 24: 552, 1964.PubMedCrossRefGoogle Scholar
  21. Powell, E. O.:Growth rate and generation time of bacteria, with special reference to continuous culture. J. gen. Microbiol. 15: 492, 1956.PubMedGoogle Scholar
  22. Ravin, A. W.:The genetics of transformation. Adv. Genetics 10: 61, 1961.CrossRefGoogle Scholar
  23. Reilly, B. E., Spizizen, J.:Bacteriophage deoxyribonucleate infection of competent Bacillus subtilis. J. Bacteriol. 89: 782, 1965.PubMedGoogle Scholar
  24. Romig, W. R.:Infection of Bacillus subtilis with phenol extracted bacteriophages. Virology 16: 452, 1962.PubMedCrossRefGoogle Scholar
  25. Saito, H., Miura, K. I.:Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. biophys. Acta 72: 619, 1963.PubMedCrossRefGoogle Scholar
  26. Warren, S. C.:Sporulation in Bacillus subtilis. Biochemical changes. Biochem. J. 109: 811, 1968.PubMedGoogle Scholar
  27. Warren, S. C.:Sporulation in Bacillus subtilis. Biochemical changes. Biochem. J. 109: 811, 1968.PubMedGoogle Scholar
  28. Young, F. E., Spizizen, J.:Physiological and genetic factors affecting transformation of Bacillus subtilis. J. Bacteriol. 81: 823, 1961.PubMedGoogle Scholar
  29. Young, F. E., Spizizen, J.:Biochemical aspect of competence in the Bacillus subtilis transformation system. J. biol. Chem. 238: 3126, 1963.PubMedGoogle Scholar

Copyright information

© Academia, nakladatelství Československé akademie věd 1970

Authors and Affiliations

  • S. Horváth
    • 1
  1. 1.Institute of GeneticsHungarian Academy of SciencesBudapest

Personalised recommendations