The Botanical Review

, 64:1 | Cite as

Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets

  • Robert J. Soreng
  • Jerrold I. Davis


A phylogenetic analysis of the grass family (Poaceae) was conducted using two character sets, one representing variation in 364 mapped and cladistically informative restriction sites from all regions of the chloroplast genome, the other representing variation in 42 informative “structural characters.” The structural character set includes morphological, anatomical, chromosomal, and biochemical features, plus structural features of the chloroplast genome. The taxon sample comprises 75 exemplar taxa, including 72 representatives of Poaceae and one representative of each of three related families (Flagellariaceae, Restionaceae, and Join-villeaceae);Flagellaria served as the outgroup for the purpose of cladogram rooting. Among the grasses, 24 tribes and all 16 subfamilies of grasses recognized by various modern authors were sampled. Transformations of structural characters are mapped onto the phylogenetic hypotheses generated by the analysis, and interpreted with respect to biogeography and the evolution of wind pollination in the grass family. A major goal of the study was to test the monophyly of several putatively natural groups, including Bambusoideae, Pooideae, Arundinoideae, and the “PACC clade” (the latter comprising subfamilies Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae), as well as to analyze the phylogenetic structure within these groups and others. Several genera of controversial placement (Amphipogon, Anisopogon, Anomochloa, Brachyelytrum, Diarrhena, Eremitis, Ehrharta, Lithachne, Lygeum, Nardus, Olyra, Pharus, andStreptochaeta) also were included, with the goal of determining their phylogenetic affinities. The two character sets were analyzed separately, and a simultaneous analysis of the combined matrices also was conducted. The combined data set also was analyzed using homoplasy-implied weights. Among major results of the combined unweighted analysis were resolution of a sister-group relationship betweenJoinvillea and Poaceae; resolution of a clade comprisingAnomochloa andStreptochaeta as the sister of all other grasses, withPharus the next group to diverge from the lineage that includes all remaining grasses; and resolution of other taxa often assigned to Bambusoideae s.l. (includingEhrharta and Oryzeae, and excluding a few other taxa as noted) as a paraphyletic assemblage, within which is nested a clade that consists ofBrachyelytrum, the PACC clade (includingAmphipogon), and Pooideae (including Brachypodieae, Stipeae,Anisopogon, Diarrhena, Lygeum, andNardus). Within the PACC clade,Aristida is identified as the sister of all other elements of the group; Chloridoideae, Centothecoideae, and Panicoideae are each resolved as monophyletic, the latter two being sister-groups; and the remaining Arundinoid elements constitute a paraphyletic group within which are nested these three subfamilies. Within the Pooideae, four “core tribes” (Bromeae, Hordeeae [i.e., Triticeae], Agrostideae [i.e., Aveneae], andPoeae, the latter includingSesleria) are resolved as a monophyletic group that is nested among the remaining elements of the subfamily (Brachypodieae, Meliceae, Stipeae,Anisopogon, Diarrhena, Lygeum, andNardus). A second principal goal of the analysis was to identify structural synapomorphies of clades. Among the synapomorphies identified for some of the major clades are the following: gain of a 6.4 kb inversion in the chloroplast genome inJoinvillea and the grasses; reduction to 1 ovule per pistil, gain of a lateral “grass-type” embryo, and gain of an inversion around the gene trnT in the chloroplast genome in the grasses; loss of arm cells in the clade that consists ofBrachyelytrum, Pooideae, and the PACC clade; loss of the epiblast and gain of an elongate mesocotyl internode in the PACC clade; gain of proximal female-sterile florets in female-fertile spikelets, gain of overlapping embryonic leaf margins, and gain ofPanicum- type endosperm starch grains in the clade that comprises Centothecoideae and Panicoideae; and loss of the scutellar tail of the embryo in Pooideae (in one of two alternative placements of Pooideae among other groups). These findings are consistent with an origin and early diversification of grasses as forest understory herbs, followed by one or more radiations into open habitats, concomitant with multiple origins of C4 photosynthesis and specialization for wind pollination.


Botanical Review Chloroplast Genome Structural Character Character Evolution Alternative Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Alvarez, L. W., W. Alvarez, F. Asaro &H. V. Michel. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108.PubMedCrossRefGoogle Scholar
  2. ————. 1982. Current status of the impact theory for the terminal Cretaceous extinction. Geol. Soc. Amer. Spec. Pap. 190: 305–315.Google Scholar
  3. Arber, A. 1929. Studies in the Gramineae. VI. 1.Streptochaeta. 2.Anomochloa. 3.Ichnanthus. Ann. Bot. (London) 43: 35–53.Google Scholar
  4. Barker, N. P. 1995. A molecular phylogeny of the subfamily Arundinoideae (Poaceae). Ph.D. dissertation, University of Cape Town, South Africa.Google Scholar
  5. —,H. P. Linder &E. H. Harley. 1995. Polyphyly in the Arundinoideae (Poaceae): Evidence fromrbcL. Syst. Bot. 20: 423–435.CrossRefGoogle Scholar
  6. Baum, B. R. 1987. Numerical taxonomic analyses of the Poaceae. Pages 334–342in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  7. Bessey, E. A. 1917. The phylogeny of grasses. Rep. Michigan Acad. Sci. 19: 239–245.Google Scholar
  8. Bews, J. W. 1929. The world’s grasses: Their differentiation, distribution, economics, and ecology. Longmans Green, London.Google Scholar
  9. Black, J. M. 1960. Flora of South Australia. Part 1. Ed. 2. W. L. Hawes, Adelaide.Google Scholar
  10. Bor, N. L. 1968. Flora of Iraq. Vol. 9, Gramineae. Ministry of Agriculture, Baghdad.Google Scholar
  11. Bowman, C. M., B. Koller, H. Delius &T. A. Dyer. 1981. A physical map of wheat chloroplast DNA showing the location of the structural genes for the ribosomal RNAs and the large subunit of ribu-lose 1,5-bisphosphate carboxylase. Molec. Gen. Genet. 183: 93–101.CrossRefGoogle Scholar
  12. Brown, W. V. 1977. The Kranz syndrome and its subtypes in grass systematics. Mem. Torrey Bot. Club 23: 1–97.Google Scholar
  13. —,W. F. Harris &J. D. Graham. 1959. Grass morphology and systematics: I. The internode. Southw. Naturalist 4: 115–125.CrossRefGoogle Scholar
  14. Butzin, F. 1965. Neue Untersuchungen über die Blüte der Gramineae. Ph.D. dissertation, Freie Universität Berlin.Google Scholar
  15. Campbell, C. S. &E. A. Kellogg. 1987. Sister group relationships of the Poaceae. Pages 217–224in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  16. —,P. E. Garwood &L. P. Specht. 1986. Bambusoid affinities of the North American temperate genusBrachyelytrum (Gramineae). Bull. Torrey Bot. Club 113: 135–141.CrossRefGoogle Scholar
  17. Camus, E. G. 1913. Les Bambusées. Paul Lechevalier, Paris.Google Scholar
  18. Caro, J. A. 1982. Sinopsis taxonomica de las Gramineas Argentinas. Dominguesia 4: 1–51.Google Scholar
  19. Čelakovský, L. 1889. Über den Ährchenbau der brasilianische GrasgattungStreptochaeta Schrader. Sitzungsber. Königl. Böhm. Ges. Wiss. Prag., Math.-Naturwiss. Cl. 3: 14–42.Google Scholar
  20. Chapman, G. P. 1990. The widening perspective: Reproductive biology of bamboos, some dryland grasses and cereals. Pages 240–257in G. P. Chapman (ed.), Reproductive versatility in the grasses. Cambridge University Press, Cambridge.Google Scholar
  21. —. 1996. The biology of grasses. CAB International, Wallingford, UK.Google Scholar
  22. Chase, M. W., D. W. Stevenson, P. Wilkin &P. J. Rudall. 1995. Monocot systematics: A combined analysis. Pages 685–730in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.Google Scholar
  23. Choo, Meng Keong, R. J. Soreng &J. I. Davis. 1994. Phylogenetic relationships amongPuccinellia and allied genera of Poaceae and inferred from chloroplast DNA restriction site variation. Amer. J. Bot. 81: 119–126.CrossRefGoogle Scholar
  24. Clark, L. G. &E. J. Judziewicz. 1996. The grass subfamilies Anomochlooideae and Pharoideae (Poaceae). Taxon 45: 641–645.CrossRefGoogle Scholar
  25. — &X. Londoño. 1991. Miscellaneous new taxa of bamboo (Poaceae: Bambuseae) from Colombia, Ecuador and Mexico. Nordic J. Bot. 11: 323–331.Google Scholar
  26. —,Weiping Zhang &J. F. Wendel. 1995. A phylogeny of the grass family (Poaceae) based onrdhF sequence data. Syst. Bot. 20: 436–460.CrossRefGoogle Scholar
  27. Clayton, W. D. 1975. Chorology of the genera of Gramineae. Kew Bull. 30: 111–132.CrossRefGoogle Scholar
  28. —. 1990. The spikelet. Pages 32–51in G. P. Chapman (ed.), Reproductive versatility in the grasses. Cambridge University Press, Cambridge.Google Scholar
  29. -& S. A. Renvoize. 1986. Genera Graminum, grasses of the world. Kew Bull. XIII.Google Scholar
  30. Clifford, H. T. 1961. Floral evolution in the family Gramineae. Evolution 15: 455–460.CrossRefGoogle Scholar
  31. —. 1965. The classification of Poaceae: A statistical study. Papers, Dept. of Biology, University of Queensland 4: 243–253.Google Scholar
  32. —. 1987. Spikelet and floral morphology. Pages 21–30in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  33. —,W. T. Williams &G. N. Lance. 1969. A further numerical contribution to the classification of the Poaceae. Austral. J. Bot. 17: 119–131.CrossRefGoogle Scholar
  34. Conner, H. E. 1979. Breeding systems in the grasses: A survey. New Zealand J. Bot. 17: 547–574.Google Scholar
  35. —. 1981. Evolution of reproductive systems in the Gramineae. Ann. Missouri Bot. Gard. 68: 48–74.CrossRefGoogle Scholar
  36. —. 1987. Reproductive biology in grasses. Pages 117–132in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  37. Crepet, W. L. &G. D. Feldman. 1991. The earliest remains of grasses in the fossil record. Amer. J. Bot. 78: 1010–1014.CrossRefGoogle Scholar
  38. Cronn, R. C., X. Zhao, A. H. Paterson &J. H. Wendel. 1996. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Molec. Evol. 42: 685–705.PubMedCrossRefGoogle Scholar
  39. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  40. Cummings, M. P., L. M. King &E. A. Kellogg. 1994. Slipped strand mispairing in a plastid gene:rpoC2 in grasses (Poaceae). Molec. Biol. Evol. 11: 1–8.PubMedGoogle Scholar
  41. Dahlgren, R. M. T., H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons. Springer-Verlag, New York.Google Scholar
  42. Darbysbire, S. J. &S. I. Warwick. 1992. Phylogeny of North AmericanFestuca (Poaceae) and related genera using chloroplast DNA restriction site variation. Canad. J. Bot. 70: 2415–2429.Google Scholar
  43. Davidse, G., M. Sousa &A. O. Charter. 1994. Flora Mesoamericana. Vol. 6, Alismataceae a Cyperaceae. Universidad Nacional Autonoma de Mexico, D.F., Mexico.Google Scholar
  44. Davis, J. I. 1993. Character removal as a means for assessing stability of clades. Cladistics 9: 201–210.CrossRefGoogle Scholar
  45. —. 1995. A phylogenetic structure of the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Syst. Bot. 20: 503–527.CrossRefGoogle Scholar
  46. — &R. J. Soreng. 1993. Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. Amer. J. Bot. 81: 1444–1454.CrossRefGoogle Scholar
  47. —,M. W. Frohlich &R. W. Soreng. 1993. Cladistic characters and cladogram stability. Syst. Bot. 18: 188–196.CrossRefGoogle Scholar
  48. -,M. P. Simmons, D. W. Stevenson & J. F. Wendel. In press. Data decisiveness, data quality, and incongruence in phylogenetic analysis: An example from the monocotyledons using mitochondrialatpA sequences. Syst. Biol.Google Scholar
  49. Davis, P. H. 1985. Flora of Turkey. Vol. 9. University Press, Edinburgh.Google Scholar
  50. Decker, H. F. 1964. An anatomic-systematic study of the classical tribe Festuceae (Gramineae). Amer. J. Bot. 51: 453–463.CrossRefGoogle Scholar
  51. de Wet, J. M. J. 1954. The genusDanthonia in grass phylogeny. Amer. J. Bot. 41: 204–211.CrossRefGoogle Scholar
  52. Doebley, J., M. Durbin, D. M. Golenberg, M. T. Clegg &Din Pow Ma. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution 44: 1097–1108.CrossRefGoogle Scholar
  53. Downie, S. R. &J. D. Palmer. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. Pages 14–35in P. S. Soltis et al. (eds.), Molecular systematics of plants. Chapman & Hall, New York.Google Scholar
  54. Doyle, J. D., J. I. Davis, R. J. Soreng, D. Garvin &M. J. Anderson. 1992. Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. U.S.A. 89: 7722–7726.CrossRefGoogle Scholar
  55. Duvall, M. R. &B. R. Morton. 1996. Molecular phylogenetics of Poaceae: An expanded analysis ofrbcL sequence data. Molec. Phylogenet. & Evol. 5: 352–358.CrossRefGoogle Scholar
  56. —,M. T. Clegg, M. W. Chase, W. D. Clark, W. J. Kress, H. G. Hills, L. E. Eguiarte, J. F. Smith, B. S. Gaut, E. A. Zimmer &G. H. Learn Jr. 1993. Phylogenetic hypotheses for the monocotyledons constructed fromrbcL sequence data. Ann. Missouri Bot. Gard. 80: 607–619.CrossRefGoogle Scholar
  57. —,P. M. Peterson &A. H. Christensen. 1994. Alliances ofMuhlenbergia (Poaceae) within New World Eragrostideae are identified by phylogenetic analysis of mapped restriction sites from plastid DNAs. Amer. J. Bot. 81: 622–629.CrossRefGoogle Scholar
  58. Ebinger, J. E. &J. L. Carlen. 1975. Culm morphology and grass systematics. Trans. Illinois State Acad. Sci. 68: 87–101.Google Scholar
  59. Eernisse, D. J. &A. G. Kluge. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molec. Biol. Evol. 10: 1170–1195.PubMedGoogle Scholar
  60. Engler, A. &K. Prantl. 1888. Die natürlichen Pflanzenfamilien. Vol. 2, subvol. 4. Engelmann, Leipzig.Google Scholar
  61. Farris, J. S. 1976. Phylogenetic classification of fossils with recent species. Syst. Zool. 25: 271–282.CrossRefGoogle Scholar
  62. —. 1980. The information content of the phylogenetic system. Syst. Zool. 28: 483–519.CrossRefGoogle Scholar
  63. —. 1989. The retention index and the rescaled consistency index. Cladistics 5: 417–419.CrossRefGoogle Scholar
  64. —,M. Källersjö, A. G. Kluge &C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315–319.CrossRefGoogle Scholar
  65. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  66. Fernald, M. L. 1950. Gray’s manual of botany. Ed. 8. Dioscorides Press, Portland, Oregon.Google Scholar
  67. Galbreath, E. C. 1974. Stipid grass “seeds” from the Oligocene and Miocene deposits of northeastern Colorado. Trans. Illinois State Acad. Sci. 67: 366–368.Google Scholar
  68. Gaut, B. S., B. R. Morton, B. C. McCaig &M. T. Clegg. 1996. Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid generbcL. Proc. Natl. Acad. Sci. U.S.A. 93: 10274–10279.PubMedCrossRefGoogle Scholar
  69. Goloboff, P. 1993a. Estimating character weights during tree search. Cladistics 9: 83–91.CrossRefGoogle Scholar
  70. -. 1993b.Nona, version 1.16 (computer software and manual). Distributed by the author.Google Scholar
  71. -. 1993c.Piwe, version 2.15 (computer software and manual). Distributed by the author.Google Scholar
  72. Gould, F. W. 1975. The grasses of Texas. Texas A & M University Press, College Station.Google Scholar
  73. Great Plains Flora Association. 1986. Flora of the Great Plains. University Press of Kansas, Lawrence.Google Scholar
  74. Hallam, A. 1987. End-Cretaceous mass extinction event: Argument for terrestrial causation. Science 238: 1237–1242.PubMedCrossRefGoogle Scholar
  75. Hamby, R. K. &E. A. Zimmer. 1988. Ribosomal RNA sequences for inferring phytogeny within the grass family Poaceae. Pl. Syst. Evol. 160: 29–38.CrossRefGoogle Scholar
  76. ——. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pages 50–91in P. S. Soltis et al. (eds.), Molecular systematics of plants. Chapman & Hall, New York.Google Scholar
  77. Hattersley, P. W. 1987. Variations in photosynthetic pathway. Pages 49–64in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  78. — &L. Watson. 1992. Diversification of photosynthesis. Pages 38–116in G. P. Chapman (ed.), Grass evolution and domestication. Cambridge University Press, Cambridge.Google Scholar
  79. Heslop-Harrison, Y. &K. R. Shivanna. 1977. The receptive surface of the angiosperm stigma. Ann. Rev. Bot. 41: 1233–1258.Google Scholar
  80. Hilu, K. W. &K. Wright. 1982. Systematics of Gramineae: A cluster analysis study. Taxon 31: 9–36.CrossRefGoogle Scholar
  81. Hiratsuka, J., H. Shimada, R. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, Sun Chong-Rong, Meng Bin-Yuan, Li Yu-Qing, A. Kanno, Y. Nishizawa, A. Hirai, K. Shinozaki &M. Sugiura. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molec. Gen. Genet. 217: 185–194.PubMedCrossRefGoogle Scholar
  82. Hitchcock, A. S. 1951. Manual of the grasses of the United States. Ed. 2, revised by A. Chase. U.S.D.A. Misc. Pub. 200, Washington, DC.Google Scholar
  83. Hitchcock, C. L. 1969. Gramineae. Pages 384–725in C. L. Hitchcock et al. (eds.), Vascular plants of the Pacific Northwest. Part 1. University of Washington Press, Seattle.Google Scholar
  84. Hock-Hin, Y. &L. Watson. 1987. Taxonomic patterns in protein amino acid profiles of grass leaves and caryopses. Pages 88–96in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smith-sonian Institution Press, Washington, DC.Google Scholar
  85. Hollowell, V. C. 1987. Systematics of the subtribe Parianinae (Poaceae: Bambuseae: Olyreae). Ph.D. dissertation, University of South Carolina, Columbia.Google Scholar
  86. Holmgren, A. H. &N. H. Holmgren. 1977. Poaceae. Pages 175–464in A. Cronquist et al. (eds.), Intermountain Flora. Vol. 6. Columbia University Press, New York.Google Scholar
  87. Holmgren, P. K., N. H. Holmgren &L. C. Barnett. 1990. Index Herbariorum, part I: The herbaria of the world. Ed. 8. New York Botanical Garden, Bronx.Google Scholar
  88. Holub, J. 1980.Glyceria. Pages 179–181in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.Google Scholar
  89. Hongping Liang &K. W. Hilu. 1996. Application of thematK gene sequences to grass systematics. Canad. J. Bot. 74: 125–134.CrossRefGoogle Scholar
  90. Hoshikawa, K. 1969. Underground organs of the seedlings and the systematics of Gramineae. Bot. Gaz. 130: 192–203.CrossRefGoogle Scholar
  91. Howe, C. J., R. F. Bowman &C. M. Dyer. 1988. Common features of three inversions in wheat chloroplast DNA. Curr. Genet. 13: 339–349.CrossRefGoogle Scholar
  92. Hunziker, J. H. 1989. Chromosome studies onAnomochloa and other Bambusoideae (Gramineae). Darwiniana 29: 41–45.Google Scholar
  93. Iturralde-Vinent, M. A. &R. D. E. MacPhee. 1996. Age and paleogeographical origin of Dominican amber. Science 273: 1850–1852.CrossRefGoogle Scholar
  94. Jacques-Felix, H. 1988. Les Liliopsida (ex Monocotyledones) n’ont pas de cotylédon. II. La pre feuille de la plantule: Ses rapports avec celles des axes feuillés. Adansonia 3: 275–333.Google Scholar
  95. Janzen, D. H. 1976. Why bamboos wait so long to flower. Ann. Rev. Ecol. Syst. 7: 347–391.CrossRefGoogle Scholar
  96. Jirasek, V. 1969. Morphologie der Schüppchen (Lodiculae) von Gräsern und ihre Terminologie ein witerer Beitrag zur Kenntnis des Baues der Lodiculae. Acta Univ. Carol. Biol. 1968: 321–344.Google Scholar
  97. —. 1970. Beitrag zur Kenntnis zweizellinger Haare bei Gräsern mit Benützunt von Pfeifen-gräsern-Moliniacaerulea (L.) Moench s.l. Acta Univ. Carol. Biol. 1969: 383–402.Google Scholar
  98. — &M. Jozifova. 1968. Morphology of lodicules, their variability and importance in the taxonomy of the Poaceae family. Bol. Soc. Argent. Bot. 12: 324–349.Google Scholar
  99. Johnston, C. R. &L. Watson. 1976. Microhairs: A universal characteristic of non-festucoid grass genera? Phytomorphology 26: 297–301.Google Scholar
  100. ——. 1981. Germination flaps in grass lemmas. Phytomorphology 31: 78–85.Google Scholar
  101. Judziewicz, E. J. 1987. Taxonomy and morphology of the tribe Phareae (Poaceae: Bambusoideae). Ph.D. dissertation, University of Wisconsin, Madison.Google Scholar
  102. —. 1990. Flora of the Guianas, fasc. 8, family 187. Poaceae (Gramineae). Koeltz, Koenigstein.Google Scholar
  103. — &T. R. Soderstrom. 1989. Morphological, anatomical and taxonomic studies inAnomochloa andStreptochaeta (Poaceae: Bambusoideae). Smithsonian Contr. Bot. 68: 1–52.Google Scholar
  104. Kellogg, E. A. &C. S. Campbell. 1987. Phylogenetic analyses of the Gramineae. Pages 310–322in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  105. — &H. P. Linder 1995. Phylogeny of the Poales. Pages 511–542in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.Google Scholar
  106. — &L. Watson. 1993. Phylogenetic studies of a large data set. I. Bambusoideae, Andropogonodae, and Pooideae (Gramineae). Bot. Rev. (Lancaster) 59: 273–343.CrossRefGoogle Scholar
  107. Kennedy, P. B. 1899. The structure of the caryopsis of grasses with reference to their morphology and classification. U.S.D.A. Div. Agrostol. Bull. 19: 1–44.Google Scholar
  108. Kim, K. J. &R. K. Jansen. 1994. Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Pl. Syst. Evol. 190: 157–185.CrossRefGoogle Scholar
  109. Kinges, H. 1961. Merkmale des Gramineenembryos, ein Beitrag zur Systematik der Gräser. Bot. Jahrb. Syst. 81: 50–93.Google Scholar
  110. Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes). Syst. Zool. 38: 7–25.CrossRefGoogle Scholar
  111. — &J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1–32.CrossRefGoogle Scholar
  112. — &A. J. Wolf. 1993. Cladistics: What’s in a word? Cladistics 9: 183–199.CrossRefGoogle Scholar
  113. Kunth, C. S. 1835. Enumeratio plantarum. I: Agrostographia synoptica. Sumptibus J. G. Collae, Stuttgart.Google Scholar
  114. Kuwabara, Y. 1961. On the shape and direction of leaves of grass seedlings J. Japan. Bot. 36: 368–373.Google Scholar
  115. Lavin, M. &M. Luckow. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Amer. J. Bot. 80: 1–14.CrossRefGoogle Scholar
  116. Linder, H. P. 1987. The evolutionary history of the Poales-Restionales: A hypothesis. Kew Bull. 42: 297–318.CrossRefGoogle Scholar
  117. — &I. K. Ferguson. 1985. On the pollen morphology and phylogeny of the Restionales and Poales. Grana 24: 65–76.Google Scholar
  118. — &E. A. Kellogg. 1995. Phylogenetic patterns in the Commelinid clade. Pages 473–496in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.Google Scholar
  119. — &P. J. Rudall. 1993. The megagametophyte inAnarthria (Anarthriaceae, Poales) and its implications for the phylogeny of the Poales. Amer. J. Bot. 80: 1455–1464.CrossRefGoogle Scholar
  120. Litke, R. 1968. Über den Nachweis tertiärer Gremineen. Monatsberichte der Deutschen Akademia der Wissenschaften zu Berlin 19: 462–471.Google Scholar
  121. McClure, F. A. 1973. Genera of bamboos native to the New World (Gramineae: Bambusoideae). Smith-sonian Contr. Bot. 9: 1–148.Google Scholar
  122. Macfarlane, T. D. &L. Watson. 1980. The circumscription of Poaceae subfamily Pooideae, with notes on some controversial genera. Taxon 29: 645–666.CrossRefGoogle Scholar
  123. Martinovský, J. O.1980.Stipa. Pages 247–252in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.Google Scholar
  124. Metcalfe, C. R. 1960. Anatomy of the monocotyledons, I. Gramineae. Clarendon Press, Oxford.Google Scholar
  125. Mickevich, M. F. &J. S. Farris. 1981. The implications of congruence inMenidia. Syst. Zool. 30: 351–370.CrossRefGoogle Scholar
  126. Mlada, J. 1977. The histological structure of the grass embryo and its significance for the taxonomy of the family Poaceae. Acta Univ. Carol. Biol. 1974: 51–156.Google Scholar
  127. Morton, B. R., B. S. Gaut &M. T. Clegg. 1996. Evolution of alcohol-dehydrogenase genes in the palm and grass families. Proc. Natl. Acad. U.S.A. 93: 11735–11739.CrossRefGoogle Scholar
  128. Müller, J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. (Lancaster) 47: 1–142.CrossRefGoogle Scholar
  129. Nadot, S., R. Bajon &B. Lejeune. 1994. The chloroplast generps 4 as a tool for the study of Poaceae phylogeny. Pl. Syst. Evol. 191: 27–38.CrossRefGoogle Scholar
  130. Nakai, T. 1943. Ordines, familiae, tribi, genera, sectiones, species, varietates, formae et combinationones novae a Prof. Nakai, Takenoshin adhuc ut novis edita. Festschrift, Tokyo.Google Scholar
  131. Nees ab Essenbeck, T. F. L. 1843. Genera plantarum florae Germanicae, iconibus et descriptionibus illustrata, plantarum monocotyledonearum. Vol. 1, Gramineae. Sumtibus Henry & Cohen, Bonn.Google Scholar
  132. Newell, T. K. 1969. A study of the genusJoinvillea (Flagellariaceae). J. Arnold Arbor. 50: 527–555.Google Scholar
  133. Niklas, K. J. 1985. The aerodynamics of wind-pollination. Bot. Rev. (Lancaster) 51: 328–386.CrossRefGoogle Scholar
  134. Nixon, K. C. 1993.Clados, version 1.4.98 (computer software and manual). Distributed by the author.Google Scholar
  135. — 1996. Paleobotany in cladistics and cladistics in paleobotany: Enlightenment and uncertainty. Rev. Palaeobot. & Palynol. 90: 361–373.CrossRefGoogle Scholar
  136. -. 1997.Dada, version 1.1.4. (computer software and manual). Distributed by the author.Google Scholar
  137. — &J. M. Carpenter. 1994. On outgroups. Cladistics 9: 413–426.CrossRefGoogle Scholar
  138. ——. 1996. On simultaneous analysis. Cladistics 12: 221–241.CrossRefGoogle Scholar
  139. — &J. I. Davis. 1991. Polymorphic taxa, missing values and cladistic analysis. Cladistics 7: 233–241.CrossRefGoogle Scholar
  140. Núñez, O. 1968. El problema de la pálea deOryza L. Bol. Soc. Argent. Bot. 12: 57–97.Google Scholar
  141. Page, J. S. 1978. A scanning electron microscope survey of grass pollen. Kew Bull. 32: 313–319.CrossRefGoogle Scholar
  142. Page, V. M. 1947. Leaf anatomyof Streptochaeta and the relation of this genus to the bamboos. Bull. Torrey Bot. Club 74: 232–239CrossRefGoogle Scholar
  143. Palmer, J. &W. F. Thompson. 1981. Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. U.S.A. 78: 5533–5537.PubMedCrossRefGoogle Scholar
  144. Poinar, G. O. &J. T. Columbus. 1992. Adhesive grass spikelet with mammalian hair in Dominican amber: First fossil evidence of epizoochory. Experientia 48: 906–908.PubMedCrossRefGoogle Scholar
  145. Prat, H. 1960. Vers une classification naturelle des Gramineés. Bull. Soc. Bot. Fra. 107: 32–79.Google Scholar
  146. Quigley, F. &J. H. Weil. 1985. Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: Evidence for gene rearrangements during the evolution of chloroplast genomes. Curr. Genet. 9: 495–503.PubMedCrossRefGoogle Scholar
  147. Reeder, J. 1957. The embryo in grass systematics. Amer. J. Bot. 44: 756–768.CrossRefGoogle Scholar
  148. —. 1962. The Bambusoid embryo: A reappraisal. Amer. J. Bot. 49: 639–641.CrossRefGoogle Scholar
  149. Renvoize, S. A. 1985a. A survey of leaf-blade anatomy in grasses: V. The bamboo allies. Kew Bull. 40: 509–535.CrossRefGoogle Scholar
  150. —. 1985b. A survey of leaf-blade anatomy in grasses: VI. Stipeae. Kew Bull. 40: 731–736.CrossRefGoogle Scholar
  151. Rieppel, O. 1993. The role of paleontological data in testing homology by congruence. Acta Palaeontol. Polon. 38: 295–302.Google Scholar
  152. Rodman, J. E., K. G. Karol, R. A. Price &K. J. Sytsma. 1996. Molecules, morphology, and Dahlgren’s expanded order Capparales. Syst. Bot. 21: 289–307.CrossRefGoogle Scholar
  153. Rosengurtt, B., A. Laguardia &B. R. Arrillaga de Maffei. 1972. El character lipido del endosperma central en especies de Gramineas. Bol. Fac. Agron. Univ. Montevideo 124: 1–43.Google Scholar
  154. Roshevits, R. Yu. 1937. Zlaki. Vvedenie v izuchenie kormovykhi i khlebnyky zlakov. [Grasses. An introduction to the study of fodder and cereal grasses. English translation for the Smithsonian Institution and the National Science Foundation. 1980. Indian National Scientific Documentation Center, New Delhi.]Google Scholar
  155. Salgado-Labouriau, M. L. &M. Rinaldi. 1990. Palynology of Gramineae of the Venezuelan mountains. Grana 29: 119–128.Google Scholar
  156. —,S. Nilsson &M. Rinaldi. 1992. Exine sculpture inPariana pollen (Gramineae). Grana 32: 243–249.CrossRefGoogle Scholar
  157. Scholz, H. 1982. Über Mikroun Makrohaare einigerPiptatherum undStipa-arten (Stipeae, Gramineae). Willdenowia 12: 235–240.Google Scholar
  158. Schuster, J. 1910. Über die Morphologie der Grasblüte. Flora 100: 213–266.Google Scholar
  159. Seberg, O., S. Frederiksen, C. Baden &I. Linde-Laursen. 1991.Peridictyon, a new genus from the Balkan peninsula, and its relationship withFestucopsis (Poaceae). Willdenowia 21: 87–104.Google Scholar
  160. Sharma, M. L. 1979. Some considerations on the phylogeny and chromosomal evolution in grasses. Cytologia 44: 679–685.Google Scholar
  161. Sinha, N. R. &E. A. Kellogg. 1996. Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Amer. J. Bot. 83: 1458–1470.CrossRefGoogle Scholar
  162. Smith, A. B. &D. T. J. Littlewood. 1994. Paleontological data and molecular phylogenetic analysis. Paleobiology 20: 259–273.Google Scholar
  163. Smithson, E. 1957. The comparative anatomy of the Flagellariaceae. Kew Bull. 11: 491–501.CrossRefGoogle Scholar
  164. Soderstrom, T. R. 1980. A new species ofLithachne (Poaceae: Bambusoideae). Brittonia 32: 495–501.CrossRefGoogle Scholar
  165. —. 1981. Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Missouri Bot. Gard. 68: 15–47.CrossRefGoogle Scholar
  166. — &C. E. Calderón. 1971. Insect-pollination in tropical rain forest grasses. Biotropica 3: 1–16.CrossRefGoogle Scholar
  167. ——. 1974. Primitive forest grasses and evolution of the Bambusoideae. Biotropica 6: 141–153.CrossRefGoogle Scholar
  168. ——. 1978.Chusquea andSwallenochloa (Poaceae: Bambusoideae): Generic relationships and new species. Brittonia 30: 279–312.Google Scholar
  169. ——. 1979. A commentary on the Bamboos (Poaceae: Bambusoideae). Biotropica 11: 161–172.CrossRefGoogle Scholar
  170. — &R. P. Ellis. 1987. The position of bamboo genera and allies in a system of grass classification. Pages 225–238in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  171. — &F. O. Zuloaga. 1989. A revision of the genusOlyra and the new segregate genusParodiolyra (Poaceae: Bambusoideae: Olyreae). Smithsonian Contr. Bot. 69: i-iv, 1–79.Google Scholar
  172. Soreng, R. J., J. I. Davis &J. J. Doyle. 1990. Phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam. Pooideae. Pl. Syst. Evol. 171: 83–97.CrossRefGoogle Scholar
  173. Srivastava, S. K. 1994. Palynology of the Cretaceous-Tertiary boundary in the Scollard Formation of Alberta, Canada, and global KTB events. Rev. Palaeobot. & Palynol. 83: 137–158.CrossRefGoogle Scholar
  174. Stace, C. A. 1980.Vulpia. Pages 154–156in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.Google Scholar
  175. Stebbins, G. L. 1956. Cytogenetics and the evolution of the grass family. Amer. J. Bot. 43: 890–905.CrossRefGoogle Scholar
  176. —. 1974. Flowering plants: Evolution above the species level. Belknap Press, Harvard University, Cambridge.Google Scholar
  177. —. 1981. Coevolution of grasses and herbivores. Ann. Missouri Bot. Gard. 68: 75–86.CrossRefGoogle Scholar
  178. —. 1987. Grass systematics and evolution: Past, present, and future. Pages 359–367in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  179. — &B. Crampton. 1961. A suggested revision of the grass genera of Temperate North America. Pages 133–145in Recent Advances in Botany, Vol. 1. University of Toronto Press, Toronto.Google Scholar
  180. Stevenson, D. W. &H. Loconte. 1995. Cladistic analysis of monocot families. Pages 543–578in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.Google Scholar
  181. Sugiura, M. 1989.Oryza sativa chloroplast DNA 134,525 bp. Nagoya University, Center for Gene Research, Nagoya, Japan.Google Scholar
  182. —,K. Shinozaki, N. Zaita, M. Kusuda &M. Kumano. 1986. Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: Mapping of eleven ribosomal protein genes. Pl. Sci. 44: 211–216.CrossRefGoogle Scholar
  183. Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent? Pages 295–333in M. M. Miyamoto & J. Cracraft (eds.), Phylogenetic analysis of DNA sequences. Oxford University Press, New York.Google Scholar
  184. Tateoka, T. 1957. Miscellaneous papers on the phylogeny of Poaceae, X: Proposition of a new phylogenetic system of Poaceae. J. Japan. Bot. 32: 275–287.Google Scholar
  185. —. 1962. Starch grains of endosperm in grass systematics. Bot. Mag. (Tokyo) 75: 377–383.Google Scholar
  186. —. 1964. Notes on some grasses. XVI. Embryo structure of the genusOryza in relation to systematics. Amer. J. Bot. 51: 539–543.CrossRefGoogle Scholar
  187. —,S. Inoue &S. Kawano. 1959. Notes on some grasses. IX. Systematic significance of bicellular microhairs of leaf epidermis. Bot. Gaz. 121: 80–91.CrossRefGoogle Scholar
  188. Terrell, E. E. 1971. Survey of occurrences of liquid or soft endosperm in grass genera. Bull. Torrey Bot. Club 98: 264–268.CrossRefGoogle Scholar
  189. Thomas, K. M., B. J. Wood, C. L. Bassett &J. R. Y. Rawson. 1984. A restriction endonuclease map of the chloroplast genome of pearl millet. Curr. Genet. 8: 291–297.CrossRefGoogle Scholar
  190. Thomasson, J. R. 1987. Fossil grasses: 1820–1986 and beyond. Pages 159–167in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  191. Tillich, H.-J. 1996. Seeds and seedlings in Hanguanaceae and Flagellariaceae (Monocotyledons). Sendtnera 3: 187–197.Google Scholar
  192. —. 1980.Ampelodesmos, Anthoxanthum, and Triticeae tribal description. Pages 190,229–230,252in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.Google Scholar
  193. Tzvelev, N. N. 1977. Zlaki S.S.S.R. [Grasses of the Soviet Union. English translation for the Smith-sonian Institution. 1983. Amerind Publishing Co., New Delhi.]Google Scholar
  194. —. 1989. The system of grasses (Poaceae) and their evolution. Bot. Rev. (Lancaster) 55: 141–204.Google Scholar
  195. Uhl, N. W., J. Dransfield, J. I. Davis, M. A. Luckow, K. S. Hansen &J. J. Doyle. 1995. Phylogenetic relationships among palms: Cladistic analyses of morphological and chloroplast DNA restriction site variation. Pages 623–661in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.Google Scholar
  196. Verboom, G. A., H. P. Linder &N. P. Barker. 1994. Haustorial synergids: An important character in the systematics of Danthonioid grasses (Arundinoideae: Poaceae). Amer. J. Bot. 81: 1601–1610.CrossRefGoogle Scholar
  197. Warming, E. 1895. A handbook of systematic botany. Macmillan, New YorkGoogle Scholar
  198. Watrous, L. E. &Q. D. Wheeler. 1981. The out-group comparison method of character analysis. Syst. Zool. 30: 1–11.CrossRefGoogle Scholar
  199. Watson, L. &M. J. Dallwitz. 1992. The grass genera of the world. CAB International, Wallingford, UK.Google Scholar
  200. —,H. T. Clifford &M. J. Dallwitz. 1985. The classification of Poaceae: Subfamilies and supertribes. Austral. J. Bot. 33: 433–484.CrossRefGoogle Scholar
  201. Wendel, J. F., A. Schnabel &T. Seelanan. 1995. An unusual ribosomal DNA sequence fromGossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Molec. Phyl. Evol. 4: 298–313.CrossRefGoogle Scholar
  202. Wheeler, W. C., P. Cartwright &C. Y. Hayashi. 1993. Arthropod phylogeny: A combined approach. Cladistics 9: 1–39.CrossRefGoogle Scholar
  203. Wiley, E. O. 1981. Phylogenetics, the theory and practice of phylogenetic systematics. John Wiley, New York.Google Scholar
  204. Williams, S. E., V. A. Albert &M. W. Chase. 1994. Relationships of Droseraceae: A cladistic analysis ofrbcL sequence and morphological data. Amer. J. Bot. 81: 1027–1037.CrossRefGoogle Scholar
  205. Wolfe, J. A. 1975. Some aspects of the plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann. Missouri Bot. Gard. 62: 264–279.CrossRefGoogle Scholar
  206. -. 1977. Paleogene floras from the Gulf of Alaska region. Geol. Surv. Prof. Paper no. 997. 108 pp. + 30 pls.Google Scholar
  207. —. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Amer. Scientist 6: 694–703.Google Scholar
  208. Yakovlev, M. S. 1950. Struktura endosperma i zarodysha zlakov kak sistematicheskiy priznak. Trudy Bot. Inst. Komarova, Ser. 7, Morfol. Anat. Rast. 1: 121–128. [Structure of the endosperm and embryo of grasses as a systematic criterion. Unpublished English translation. 1970. Indian National Scientific Documentation Center, New Delhi.]Google Scholar
  209. Yaneshita, M., T. Sasakuma &Y. Ogihara. 1993. Phylogenetic relationships of turfgrasses as revealed by restriction fragment analysis of chloroplast DNA. Theor. Appl. Genet. 87: 129–135.CrossRefGoogle Scholar
  210. Yates, H. O. 1966. Morphology and cytology ofUniola (Gramineae). Southw. Naturalist 11: 145–189.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1998

Authors and Affiliations

  • Robert J. Soreng
    • 1
  • Jerrold I. Davis
    • 1
  1. 1.L. H. Bailey HortoriumCornell UniversityIthaca

Personalised recommendations