Skip to main content

Relationship between the carbohydrate metabolism ofStreptomyces aureofaciens and the biosynthesis of chlortetracycline

I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracycline biosynthesis

Соотношение между углеводным оБменом у Streptomyces Aureofaciens и Биосин тезом хлортетрациклина

I. Влуцянце перерывов в аэраццц, ормофосфама ц роданцсмоео бензцла на бцосцнмез шлормемраццклцна

Abstract

The effect of interrupted aeration on the biosynthesis of chlortetracycline (CTC) was investigated. The culture is most sensitive to interruption in aeration when between the 6th and 12th hour of growth. Then even short interruptions will result in a pronounced suppression of CTC biosynthesis. Using glucose labelled at carbon 1 and at carbon 6 with14C it could be demonstrated that the interruption in aeration brings about a decrease in the activity of the pentose shunt during breakdown of sugar in the course of subsequent cultivation. A similar effect can be induced by increasing the level of inorganic phosphate in the medium. It was shown by studying the interaction of benzyl thiocyanate and interruption of aeration on the biosynthesis of CTC that benzyl thiocyanate antagonizes the unfavourable effect of interrupted aeration. Its presence will prevent a drop in CTC production by a culture aerated with interruptions. The relationship between the enzymatic reactions of the pentose shunt and the mechanism of chlortetracycline biosynthesis is discussed.

Abstract

Изучалось влияние перерывов в аэрации на биосинтез хлортетрациклина (CTC). Культура наиболее чувствительна к перерывам в аэрации между 6-м и 12 час. выращивания, когда короткие перерывы аэрации резко угнетают биосинтез CTC. С помощью глюкозы, специфически меченой14C на первом или на шестом углероде, было доказано, что перерывы в аэрации понижают активность пентозового цикла при диссимиляции сахара в ходе дальнейшего культивирования. Такое же действие, как приостановка аэрации, в чувствительной фазе оказывает и повышение содержания ортофосфата в культивационной среде. При изучении совместного действия роданистого бензила и перерывов в азрации на биосинтес CTC было доказано, что роданистый бензил является антагонистом неблагоприятного действия перерывов в аэрации. Присутствие роданистого бензила предупреждает понижение продукции CTC при интервалах в аэрации.—Обсуждается связь связь между энзиматическими реакциями пентозового цикла и механизмом биосинтеза хлортетрациклина.

This is a preview of subscription content, access via your institution.

References

  • Abraham, S., Chaikoff, I. L.:Glycolytic pathways and lipogenesis in mammary glands of lactating and nonlactating normal rats. J. biol. Chem. 234: 2246, 1959.

    PubMed  CAS  Google Scholar 

  • Biffi, G., Boretti, G., Di Marco, A., Pennella, P.:Metabolic behaviour and chlortetracycline production by Streptomyces aureofaciens in liquid culture. Appl. Microbiol. 2: 288, 1954.

    PubMed  CAS  Google Scholar 

  • Birch, A. J., Snell, J. F., Thomson, P. J.:Studies in relation to biosynthesis. XXVIII. Oxytetracycline (Terramycin). J. chem. Soc. 425, 1962.

  • Boretti, G., Di Marco, A., Julita, P., Raggi, F., Bardi, U.:Presenza degli enzimi della via esosomonofosfato ossidativa nello Streptomyces aureofaciens. Giorn. Microbiol. 1: 406, 1956.

    CAS  Google Scholar 

  • Di Marco, A., Boretti, G., Julita, P., Pennella, P.:Researches on carbohydrate metabolism in Streptomyces aureofaciens in connection with chlortetracycline production. Rev. Ferment. Ind. Aliment. 11: 140, 1956.

    Google Scholar 

  • Eaton, N. R., Klein, H. P.:Studies on the aerobic degradation of glucose by Saccharomyces cerevisiae. Biochem. J. 67: 373, 1957.

    PubMed  CAS  Google Scholar 

  • Entenman, C., Lerner, S. R., Chaikoff, I. L., Dauben, W. G.:Determination of carbon 14 in fatty acids by direct mount technic. Proc. Soc. exp. Biol. Med. 70: 364, 1949.

    PubMed  CAS  Google Scholar 

  • Finn, R. K.:Agitation-aeration in the laboratory and in industry. Bact. Rev. 18: 254, 1954.

    PubMed  CAS  Google Scholar 

  • Friedemann T. E., Haugen, G. E.:Pyruvic, acid. II. The determination of keto acids in blood and urine. J. biol. Chem. 147: 415, 1943.

    CAS  Google Scholar 

  • Gatenbeck, S.:The biosynthesis of oxytetracycline. Biochem. biophys. Res. Commun. 6: 422, 1962.

    Article  CAS  Google Scholar 

  • Ging, N. S.:Extraction method for colorimetric determination of phosphorus in microgram quantities. Anal. Chem. 28: 1330, 1956.

    Article  CAS  Google Scholar 

  • Gomori, G.:Preparation of buffers for use in enzyme studies. Colowick, S. P., Kaplan, N. O.:Methods in enzymology, vol. 1, p. 138, Academic Press, New York 1955.

    Chapter  Google Scholar 

  • Herold, M., Bělík, E., Doskočil, J.:Biosynthesis of chlortetracycline without maintenance of aseptic conditions. Giorn. Microbiol. 2: 302, 1956.

    Google Scholar 

  • Hess, J.:Stanovení účinnosti streptomycinu a dihydrostreptomycinu difusní metodou na kovových plotnách. Preslia 27: 49, 1955.

    Google Scholar 

  • Hoštálek, Z.:Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. III. The effect of benzyl thiocyanate on carbohydrate metabolism of Streptomyces aureofaciens. Fol. microbiol. 9: 96, 1964.

    Google Scholar 

  • Hříbalová, V., Stárka, J.:Relation entre l’activité respiratoire et la biosynthèse de la chlorotétracycline chez Streptomyces aureofaciens. Ann. Inst. Pasteur 96: 120, 1959.

    Google Scholar 

  • Katz, J., Abraham, S., Baker, N.:Analytical procedure using a combined combustion-diffusion vessel. Improved method for combustion of organic compounds in aqueous solution. Anal. Chem. 26: 1503, 1954.

    Article  CAS  Google Scholar 

  • Levine, J., Garlock, E. A., Fischbach, H.:The chemical assay of aureomycin. J. Amer. Pharm. Assoc. (Sci. Ed.) 38: 473, 1949.

    CAS  Google Scholar 

  • Lynen, F., Tada, M.:Die biochemischen Grundlagen der “Polyacetat-Regel”. Angew. Chem. 73: 513, 1961.

    Article  CAS  Google Scholar 

  • Matelová, V., Musílková, M., Nečásek, J., Šmejkal, F.:Vliv přerušovaného vzdušnění na produkci chlortetracyklinu. Preslia 27: 27, 1955.

    Google Scholar 

  • Miller, P. A., Mc Cormick, J. R. D., Doerschuk, A. P.:Studies of chlortetracycline biosynthesis and the preparation of chlortetracycline-C 14. Science 123: 1030, 1956.

    PubMed  Article  CAS  Google Scholar 

  • Orlova, N. V., Verkhovtseva, T. P.:Comparative investigation of physiological characteristics of terramycin and biomycin producers. Mikrobiologiya 26: 565, 1957 (Орлова, Н. В. и Верховцева, Т. П.: Микробиология 26: 565, 1957).

    CAS  Google Scholar 

  • Pecák, V., Čížek, S., Musil, J., Čerkes, L., Herold, M., Bělík, E., Hoffman, J.:Stimulace produkce chlortetracyklinu vlivem benzylrhodanidu. Čs. mikrobiol. 3: 1, 1958.

    Google Scholar 

  • Rokos, J., Procházka, P.:Vztah metabolismu různých uhlohydrátů k produkci chlortetracyklinu u kmene Streptomyces aureofaciens. Čs. mikrobiol. 2: 251, 1957.

    CAS  Google Scholar 

  • Shen, S. C., Soong, H. Y., Chen, J. P., Hung, M. M., Yin, H. C.:Physiology of Streptomyces aureofaciens and the production of Aureomycin. III. The effect of phosphate on the utilization of carbohydrates by Streptomyces aureofaciens and the production of Aureomycin. Acta Biol. Exp. Sinica 5: 249, 1956.

    Google Scholar 

  • Shen, S. C., Chen, J. P., Hung, M. M.:Carbohydrate metabolism of Streptomyces aureofaciens. I. Enbden-Meyerhof-Parnas system and the secondary conversion through hexose monophosphate. Acta Physiol. Sinica 21: 302, 1957.

    CAS  Google Scholar 

  • Shen, S. C., Chen, J. P., Koo, T. A.:Pentose metabolism and the influence of orthophosphate on the paths of sugar degradation of Streptomyces aureofaciens. Scientia Sinica 8: 733, 1959.

    PubMed  CAS  Google Scholar 

  • Siperstein, M. D.:Glycolytic pathways. Their relation to the synthesis of cholesterol and fatty acids. Diabetes 7: 181, 1958.

    PubMed  CAS  Google Scholar 

  • Spicyn, V. I., Kodočigov, P. N., Golutvina, M. M., Kuzina, A. F., Sokolova, Z. A.:Methody práce 8 radioaktivními indikátory. Nakl. Čsl. akad. věd, Praha 1957.

  • Tauber, H.:Separation of alpha-keto acid dinitrophenylhydrazones by paper electrophoresis and their colorimetric determination. Anal. Chem. 27: 287, 1955.

    Article  CAS  Google Scholar 

  • Vaněk, Z.:Vliv kyseling α-naftyloctové na produkci chlortetracyklinu nízkoprodukčním kmenem Streptomyces aureofaciens. Čs. mikrobiol. 3: 364, 1958.

    Google Scholar 

  • Yegorov, N. S., Baranova, I. P.:The effect of p-di-methylaminobenzaldehyde on the formation of chlortetracycline. Antibiotiki 4: 35, 1959 (Егоров, Н. С. и Баранова, И. П.: Антибиотики 4: 35, 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hošťálek, Z. Relationship between the carbohydrate metabolism ofStreptomyces aureofaciens and the biosynthesis of chlortetracycline. Folia Microbiol 9, 78–88 (1964). https://doi.org/10.1007/BF02868788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868788

Keywords

  • Streptomyces
  • Benzyl
  • Pyruvic Acid
  • Shikimic Acid
  • Chlortetracycline