Advertisement

Folia Microbiologica

, Volume 9, Issue 2, pp 78–88 | Cite as

Relationship between the carbohydrate metabolism ofStreptomyces aureofaciens and the biosynthesis of chlortetracycline

I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracycline biosynthesis
  • Z. Hošťálek
Article

Abstract

The effect of interrupted aeration on the biosynthesis of chlortetracycline (CTC) was investigated. The culture is most sensitive to interruption in aeration when between the 6th and 12th hour of growth. Then even short interruptions will result in a pronounced suppression of CTC biosynthesis. Using glucose labelled at carbon 1 and at carbon 6 with14C it could be demonstrated that the interruption in aeration brings about a decrease in the activity of the pentose shunt during breakdown of sugar in the course of subsequent cultivation. A similar effect can be induced by increasing the level of inorganic phosphate in the medium. It was shown by studying the interaction of benzyl thiocyanate and interruption of aeration on the biosynthesis of CTC that benzyl thiocyanate antagonizes the unfavourable effect of interrupted aeration. Its presence will prevent a drop in CTC production by a culture aerated with interruptions. The relationship between the enzymatic reactions of the pentose shunt and the mechanism of chlortetracycline biosynthesis is discussed.

Keywords

Streptomyces Benzyl Pyruvic Acid Shikimic Acid Chlortetracycline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Соотношение между углеводным оБменом у Streptomyces Aureofaciens и Биосин тезом хлортетрациклина

I. Влуцянце перерывов в аэраццц, ормофосфама ц роданцсмоео бензцла на бцосцнмез шлормемраццклцна

Abstract

Изучалось влияние перерывов в аэрации на биосинтез хлортетрациклина (CTC). Культура наиболее чувствительна к перерывам в аэрации между 6-м и 12 час. выращивания, когда короткие перерывы аэрации резко угнетают биосинтез CTC. С помощью глюкозы, специфически меченой14C на первом или на шестом углероде, было доказано, что перерывы в аэрации понижают активность пентозового цикла при диссимиляции сахара в ходе дальнейшего культивирования. Такое же действие, как приостановка аэрации, в чувствительной фазе оказывает и повышение содержания ортофосфата в культивационной среде. При изучении совместного действия роданистого бензила и перерывов в азрации на биосинтес CTC было доказано, что роданистый бензил является антагонистом неблагоприятного действия перерывов в аэрации. Присутствие роданистого бензила предупреждает понижение продукции CTC при интервалах в аэрации.—Обсуждается связь связь между энзиматическими реакциями пентозового цикла и механизмом биосинтеза хлортетрациклина.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, S., Chaikoff, I. L.:Glycolytic pathways and lipogenesis in mammary glands of lactating and nonlactating normal rats. J. biol. Chem. 234: 2246, 1959.PubMedGoogle Scholar
  2. Biffi, G., Boretti, G., Di Marco, A., Pennella, P.:Metabolic behaviour and chlortetracycline production by Streptomyces aureofaciens in liquid culture. Appl. Microbiol. 2: 288, 1954.PubMedGoogle Scholar
  3. Birch, A. J., Snell, J. F., Thomson, P. J.:Studies in relation to biosynthesis. XXVIII. Oxytetracycline (Terramycin). J. chem. Soc. 425, 1962.Google Scholar
  4. Boretti, G., Di Marco, A., Julita, P., Raggi, F., Bardi, U.:Presenza degli enzimi della via esosomonofosfato ossidativa nello Streptomyces aureofaciens. Giorn. Microbiol. 1: 406, 1956.Google Scholar
  5. Di Marco, A., Boretti, G., Julita, P., Pennella, P.:Researches on carbohydrate metabolism in Streptomyces aureofaciens in connection with chlortetracycline production. Rev. Ferment. Ind. Aliment. 11: 140, 1956.Google Scholar
  6. Eaton, N. R., Klein, H. P.:Studies on the aerobic degradation of glucose by Saccharomyces cerevisiae. Biochem. J. 67: 373, 1957.PubMedGoogle Scholar
  7. Entenman, C., Lerner, S. R., Chaikoff, I. L., Dauben, W. G.:Determination of carbon 14 in fatty acids by direct mount technic. Proc. Soc. exp. Biol. Med. 70: 364, 1949.PubMedGoogle Scholar
  8. Finn, R. K.:Agitation-aeration in the laboratory and in industry. Bact. Rev. 18: 254, 1954.PubMedGoogle Scholar
  9. Friedemann T. E., Haugen, G. E.:Pyruvic, acid. II. The determination of keto acids in blood and urine. J. biol. Chem. 147: 415, 1943.Google Scholar
  10. Gatenbeck, S.:The biosynthesis of oxytetracycline. Biochem. biophys. Res. Commun. 6: 422, 1962.CrossRefGoogle Scholar
  11. Ging, N. S.:Extraction method for colorimetric determination of phosphorus in microgram quantities. Anal. Chem. 28: 1330, 1956.CrossRefGoogle Scholar
  12. Gomori, G.:Preparation of buffers for use in enzyme studies. Colowick, S. P., Kaplan, N. O.:Methods in enzymology, vol. 1, p. 138, Academic Press, New York 1955.CrossRefGoogle Scholar
  13. Herold, M., Bělík, E., Doskočil, J.:Biosynthesis of chlortetracycline without maintenance of aseptic conditions. Giorn. Microbiol. 2: 302, 1956.Google Scholar
  14. Hess, J.:Stanovení účinnosti streptomycinu a dihydrostreptomycinu difusní metodou na kovových plotnách. Preslia 27: 49, 1955.Google Scholar
  15. Hoštálek, Z.:Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. III. The effect of benzyl thiocyanate on carbohydrate metabolism of Streptomyces aureofaciens. Fol. microbiol. 9: 96, 1964.Google Scholar
  16. Hříbalová, V., Stárka, J.:Relation entre l’activité respiratoire et la biosynthèse de la chlorotétracycline chez Streptomyces aureofaciens. Ann. Inst. Pasteur 96: 120, 1959.Google Scholar
  17. Katz, J., Abraham, S., Baker, N.:Analytical procedure using a combined combustion-diffusion vessel. Improved method for combustion of organic compounds in aqueous solution. Anal. Chem. 26: 1503, 1954.CrossRefGoogle Scholar
  18. Levine, J., Garlock, E. A., Fischbach, H.:The chemical assay of aureomycin. J. Amer. Pharm. Assoc. (Sci. Ed.) 38: 473, 1949.Google Scholar
  19. Lynen, F., Tada, M.:Die biochemischen Grundlagen der “Polyacetat-Regel”. Angew. Chem. 73: 513, 1961.CrossRefGoogle Scholar
  20. Matelová, V., Musílková, M., Nečásek, J., Šmejkal, F.:Vliv přerušovaného vzdušnění na produkci chlortetracyklinu. Preslia 27: 27, 1955.Google Scholar
  21. Miller, P. A., Mc Cormick, J. R. D., Doerschuk, A. P.:Studies of chlortetracycline biosynthesis and the preparation of chlortetracycline-C 14. Science 123: 1030, 1956.PubMedCrossRefGoogle Scholar
  22. Orlova, N. V., Verkhovtseva, T. P.:Comparative investigation of physiological characteristics of terramycin and biomycin producers. Mikrobiologiya 26: 565, 1957 (Орлова, Н. В. и Верховцева, Т. П.: Микробиология 26: 565, 1957).Google Scholar
  23. Pecák, V., Čížek, S., Musil, J., Čerkes, L., Herold, M., Bělík, E., Hoffman, J.:Stimulace produkce chlortetracyklinu vlivem benzylrhodanidu. Čs. mikrobiol. 3: 1, 1958.Google Scholar
  24. Rokos, J., Procházka, P.:Vztah metabolismu různých uhlohydrátů k produkci chlortetracyklinu u kmene Streptomyces aureofaciens. Čs. mikrobiol. 2: 251, 1957.Google Scholar
  25. Shen, S. C., Soong, H. Y., Chen, J. P., Hung, M. M., Yin, H. C.:Physiology of Streptomyces aureofaciens and the production of Aureomycin. III. The effect of phosphate on the utilization of carbohydrates by Streptomyces aureofaciens and the production of Aureomycin. Acta Biol. Exp. Sinica 5: 249, 1956.Google Scholar
  26. Shen, S. C., Chen, J. P., Hung, M. M.:Carbohydrate metabolism of Streptomyces aureofaciens. I. Enbden-Meyerhof-Parnas system and the secondary conversion through hexose monophosphate. Acta Physiol. Sinica 21: 302, 1957.Google Scholar
  27. Shen, S. C., Chen, J. P., Koo, T. A.:Pentose metabolism and the influence of orthophosphate on the paths of sugar degradation of Streptomyces aureofaciens. Scientia Sinica 8: 733, 1959.PubMedGoogle Scholar
  28. Siperstein, M. D.:Glycolytic pathways. Their relation to the synthesis of cholesterol and fatty acids. Diabetes 7: 181, 1958.PubMedGoogle Scholar
  29. Spicyn, V. I., Kodočigov, P. N., Golutvina, M. M., Kuzina, A. F., Sokolova, Z. A.:Methody práce 8 radioaktivními indikátory. Nakl. Čsl. akad. věd, Praha 1957.Google Scholar
  30. Tauber, H.:Separation of alpha-keto acid dinitrophenylhydrazones by paper electrophoresis and their colorimetric determination. Anal. Chem. 27: 287, 1955.CrossRefGoogle Scholar
  31. Vaněk, Z.:Vliv kyseling α-naftyloctové na produkci chlortetracyklinu nízkoprodukčním kmenem Streptomyces aureofaciens. Čs. mikrobiol. 3: 364, 1958.Google Scholar
  32. Yegorov, N. S., Baranova, I. P.:The effect of p-di-methylaminobenzaldehyde on the formation of chlortetracycline. Antibiotiki 4: 35, 1959 (Егоров, Н. С. и Баранова, И. П.: Антибиотики 4: 35, 1959).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1964

Authors and Affiliations

  • Z. Hošťálek
    • 1
  1. 1.Research Institute of AntibioticsRoztoky near Prague

Personalised recommendations