Advertisement

The Botanical Review

, Volume 37, Issue 4, pp 397–436 | Cite as

Post-irradiation modulation of ionizing radiation damage to plants

  • Richard M. Klein
  • Deana T. Klein
Interpreting Botanical Progress

Keywords

Botanical Review Radiation Damage Chromosome Aberration Barley Seed Oxygen Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, J. D. &R. A. Nilan. 1958. After effects of ionizing radiation in barley. II. Modification by storage of X-irradiated seeds in different concentrations of oxygen. Rad. Res.8: 111–122.Google Scholar
  2. ——, &H. M. Gunthardt. 1955. After effects of ionizing radiation in barley. I. Modification by storage of X-rayed seeds in oxygen and nitrogen. A preliminary note. Northwest Sci.20: 101–108.Google Scholar
  3. Adler, H. I. &A. A. Hardigree. 1965. Post irradiation growth, division and recovery in bacteria. Rad. Res.25: 92–102.Google Scholar
  4. ——. 1966. Recovery of irradiated cells promoted by unirradiated bacteria. Rad. Res. Suppl.6: 212–219.Google Scholar
  5. Alexander, P. &J. T. Lett. 1967. Effects of ionizing radiation on biological macromolecules. Pp. 267–365.In:M. Florkin &E. A. Stotz (eds.), Comprehensive Biochemistry. Vol. 27. Elsevier Publ. Co., N. Y.Google Scholar
  6. Alper, T. 1952. Indirect inactivation of bacteriophage during and after exposure to ionizing radiation. Disc. Faraday Soc.12: 234.Google Scholar
  7. —. 1956. The modification of damage caused by primary ionization of biological targets. Rad. Res.5: 573–586.Google Scholar
  8. —. 1963. Lethal mutations and cell death. Physics in Med. Biol.8: 365–385.Google Scholar
  9. — &N. E. Gillies. 1958. “Restoration” ofEscherichia coli strain B after irradiation: Its dependence on suboptimal growth conditions. J. Gen. Microbiol.18: 461–472.PubMedGoogle Scholar
  10. ——. 1960. The relationship between growth and survival after irradiation ofEscherichia coli strain B and two resistant mutants. J. Gen. Microbiol.22: 113–128.PubMedGoogle Scholar
  11. Anderson, L. F. 1955. Effects of centrifugation on X-ray-induced chromatid aberrations inTradescantia irradiated in air and nitrogen. Genetics (Abstr.)40: 563.Google Scholar
  12. Anderson, E. H. &D. Billin. 1955. The effect of temperature on X-ray-induced mutability inEscherichia coli. J. Bact.70: 35–43.PubMedGoogle Scholar
  13. Bacq, Z. M. 1965. Chemical Protection Against Ionizing Radiation. C. C. Thomas Co., Springfield, Ill.Google Scholar
  14. — &P. Alexander. 1961. Fundamentals of Radiobiology. Second Ed. Pergamon Press, N. Y.Google Scholar
  15. — &R. Gouthier. 1968. Mechanism of action of sulfur-containing radioprotectants. Brookhaven Sympos. Biol.20: 241–255.Google Scholar
  16. Bailey, P. C. &S. Wolff. 1964. A comparison of X-ray- and ultra-violet-induced aberrations in pollen tube chromosomes ofTradescantia. II. Influence of protein synthesis inhibitors. Rad. Bot.4: 121–125.Google Scholar
  17. Bair, W. J. &J. N. Stannard. 1953. Role of electrolytes and starvation in altering the apparent radiosensitivity of baker’s yeast. J. Gen. Physiol.38: 493–504.Google Scholar
  18. Barber, A. A. &K. M. Wilbur. 1959. The effect of X-irradiation on the antioxidant activity of mammalian tissues. Rad. Res.10: 167–175.Google Scholar
  19. Barnothy, M. F. (ed.). 1964. Biological Effects of Magnetic Fields. Plenum Press, N. Y.Google Scholar
  20. Beatty, A. V. 1968. The effect of exogenous nucleosides and nucleotides on recovery of X-ray-induced chromosome breaks. Brookhaven Sympos. Biol.20: 98–110.Google Scholar
  21. — &J. W. Beatty. 1960a. Potassium gluconate and ATP effects on chromosome aberration yield. Proc. Nat. Acad. Sci. (Wash.)46: 1488–1492.Google Scholar
  22. ——. 1960b. Postirradiation effects on chromosome aberrations inTradescantia microspores. Genetics45: 331–344.PubMedGoogle Scholar
  23. ——. 1962. Metabolic repair of radiation-induced chromosome damage. Rad. Bot.2: 65–69.Google Scholar
  24. ——. 1963. Radiation recovery enhanced through inhibitors of protein synthesis and amino acids. Proc. Nat. Acad. Sci. (Wash.)49: 434–439.Google Scholar
  25. ——. 1967. Radiation repair of chromosome breaks as affected by constituents of nucleic acids. Rad. Bot.7: 29–34.Google Scholar
  26. Bell, S. &S. Wolff. 1964. Studies on the mechanism of the effect of fluorodeoxyuridine on chromosomes. Proc. Nat. Acad. Sci. (Wash.)51: 195–202.Google Scholar
  27. Belokonskii, I. &G. Rusev. 1959. Significance of oxidizing processes for early radiation reactions. Biofizika4: 204–208.Google Scholar
  28. Belquez, A. 1955. Action des rayons X surCrepis zacentha L. Babe.: Influence de différents facteurs sur le taux de léthalité cellulaire produit par les rayons X. C. R. Acad. Sci. (Paris)241: 900–902.Google Scholar
  29. Bentler, E., M. J. Rabson, &L. O. Jacobson. 1954. Prolongation of the lag phase of irradiatedEscherichia coli. Proc. Soc. Exp. Biol. Med.85: 682–684.Google Scholar
  30. Berg, C. C., R. A. Nilan, &C. F. Konzak. 1965. Factors affecting the mutagenic action of oxygen in barley seeds. Mutation Res.2: 263–273.PubMedGoogle Scholar
  31. Bergbusch, V. L. &R. S. Caldecott. 1963. The effects of pre-irradiation and postirradiation temperature treatments on the X-ray sensitivity of seeds ofHordeum. Rad. Res.20: 207–220.Google Scholar
  32. Bersohn, M. &J. C. Baird. 1966. An Introduction to Electron Paramagnetic Resonance. Benjamin and Co., N. Y.Google Scholar
  33. Bhaskaran, S. &W. KöHNLEIN. 1964. ESR studies on plant seeds with different radiosensitivities. II. Effects of oxygen and nitric oxide at different temperatures. Rad. Bot.4: 291–298.Google Scholar
  34. Biebl, R. &W. Url. 1963. Chemical protection against the effects of alpha rays and of thermal neutrons in plant cells by pre- and post-treatments. Rad. Bot.3: 67–73.Google Scholar
  35. Biswas, S. &T. Matsus. 1966. Protective and recovery effects of chemicals on plant growth, chromosome aberration and mutation in irradiated seed of crop plants. Rad. Bot.6: 575–587.Google Scholar
  36. Blois, M. S. (ed.). 1961. Free Radicals in Biological Systems. Academic Press, N.Y.Google Scholar
  37. Butler, J. A. V. 1959. Changes induced in nucleic acids by ionizing radiations and chemicals. Rad. Res. Suppl.1: 403–416.Google Scholar
  38. — &B. E. Conway. 1950. The action of ionizing radiations and of radiomimetic substances on deoxyribonucleic acid. Part II. The effect of oxygen on the degradation of the nucleic acid by X-rays. J. Chem. Soc.1950: 3418–3421.Google Scholar
  39. Caldecott, R. S. 1958. Effects of hydration on X-ray sensitivity inHordeum. Rad. Res.3: 316–330.Google Scholar
  40. —. 1961. Seedling height, oxygen availability, storage and temperature: Their relation to radiation induced genetic and seedling damage.In: Effects of Ionizing Radiation on Seeds. IAEA. Vienna, Austria.Google Scholar
  41. —,E. B. Johnson, D. T. North, &C, F. Koznak. 1957. Modification of radiation-induced injury by post-treatment with oxygen. Proc. Nat. Acad. Sci. (Wash.)43: 975–983.Google Scholar
  42. — &L. Smith. 1948. Resuscitation of heat inactivated seeds with Xradiaön J. Hered.39: 195–198.Google Scholar
  43. ——. 1952. The influence of heat treatments on the injury and cytogenetic effects of X-rays on barley. Genetics37: 136–157.PubMedGoogle Scholar
  44. Chesley, L. C. 1935. The effect of light upon the sensitivity of wheat seedlings to X-rays. J. Cell. Comp. Physiol.6: 69–84.Google Scholar
  45. Cluzet, J. &T. Kofman. 1929. Action des rayons ultraviolets, seuls ou associés aux rayons X, sur la germination. C. R. Soc. Biol.101: 820–821.Google Scholar
  46. Cohn, N. S. 1957. The effect of carbon monoxide on the restitution of X-rayinduced chromosome breaks inAllium cepa. Genetics (Abstr.)42: 366.Google Scholar
  47. —. 1958. An analysis of the rejoining of X-ray-induced broken ends of chromosomes in the root tips ofAllium cepa. Genetics43: 362–373.PubMedGoogle Scholar
  48. —. 1959. The effective wavelength promoting light-reversal of carbonmonoxide-inhibiting chromosome rejoining. Exp. Cell Res.16: 424–427.PubMedGoogle Scholar
  49. Cole, L. J. 1968. Cellular and humoral factors in recovery from radiation injury. Brookhaven Sympos. Biol.20: 263–283.Google Scholar
  50. Conger, A. D. 1960. Genetical protection. Pp. 212–251.In:A. Hollaender (ed.), Radiation Protection and Recovery. Pergamon Press, N. Y.Google Scholar
  51. —. 1961. Biological after-effect and long-lived free radicals in irradiated seeds. J. Cell. Comp. Physiol.58 (Suppl. 1): 27–32.PubMedGoogle Scholar
  52. -. 1962. Pre- and post-irradiation protection by hydrogen sulfide and its effect on free radicals. Proc. Second Intern. Cong. Rad. Res. p. 20.Google Scholar
  53. —,A. H. Flasterstein, &K. Thompson. 1966. A test for a magnetic effect in irradiated seeds. Rad. Bot.6: 105–109.Google Scholar
  54. Conger, A. D., R. A. Nilan, C. F. Konzak, &S. Metter. 1966. The influence of seed water content on the oxygen effect in irradiated barley seeds. Rad. Bot.6: 129–144.Google Scholar
  55. Cook, A. R. 1953. Effect of gamma irradiation on the ascorbic acid content of green plants. Science117: 588–589.Google Scholar
  56. Cook, E. V. 1939. Influence of low temperatures on recovery from Roentgen rays. Radiology32: 289–293.Google Scholar
  57. Cook, R. F. 1963. The effects of water and a protective agent on gamma-ray induced free radicals in mustard seeds. Intern. J. Rad. Biol.7: 497–504.Google Scholar
  58. Curtis, H. J., N. Delihas, R. S. Caldecott, &C. F. Konzak. 1958. Modification of radiation damage in dormant seeds by storage. Rad. Res.8: 526–534.Google Scholar
  59. Dainton, F. S. 1959. Chemical effects of radiation. Rad. Res. Suppl.1: 1–25.Google Scholar
  60. Das, N. K. &M. Alfert. 1961. Accelerated DNA synthesis in onion root meristem duringX-irradiation. Proc. Nat. Acad. Sci. (Wash.)47: 1–6.Google Scholar
  61. Davies, D. R. &H. J. Evans. 1966. The role of genetic damage in radiationinduced cell lethality. Adv. Rad. Biol.2: 243–353.Google Scholar
  62. Deleporte, B. 1956. La “restauration par voisinage” chez des bactéries irradiées par des rayons X. Ann. Inst. Pasteur91: 727–735.Google Scholar
  63. Devik, F. &F. Lothe. 1955. The effect of cysteamine, cystamine, and hypoxia on mortality and bone marrow chromosome aberrations in mice after total body roentgen irradiation. Acta Radiol.44: 234–248.Google Scholar
  64. Dickey, F. H., G. H. Cleland, &C. Lotz. 1949. The role of organic peroxides in the induction of mutations. Proc. Nat. Acad. Sci. (Wash.)35: 581–586.Google Scholar
  65. Dickie, N., D. A. Dennis, &F. S. Thatcher. 1968. Effect of p-fluorophenylalanine on radiation sensitivity inEscherischia coli. Canad. J. Microbiol.14: 799–803.Google Scholar
  66. Doudney, C. O. 1956. Restoration from an X-ray induced block in deoxyribonucleic acid synthesis inEscherischia coli. J. Bact.72: 488–493.PubMedGoogle Scholar
  67. Duarte, M. I. &A. Kovoor. 1965. Sur l’action radiorestauratrice d’un fraction extraite de feuilles de tabac. C. R. Acad. Sci. (Paris)261: 4202–4205.Google Scholar
  68. Ducoff, H. S. 1957. Factors affecting radiation-induced division delay inChilamonas paramecium. Physiol. Zool.30: 268–279.Google Scholar
  69. Ebert, M. 1960. Direct and indirect initial effects on biological systems. Pp. 214–226.In:M. Burton, J. S. Kirby-Smith, &J. L. Magee (eds.), Comparative Effects of Radiation. John Wiley & Sons, N. Y.Google Scholar
  70. — &A. Howard. 1955. Modification of X-ray sensitivity of bean roots to hydrogen gas. Nature176: 828.PubMedGoogle Scholar
  71. Ehrenberg, L. 1955. The radiation-induced growth inhibition in seedlings. Bot. Notiser108: 184–186.Google Scholar
  72. —. 1959. Radiobiological mechanisms of genetic effects. A review of some current lines of research. Rad. Res. Suppl.1: 102–123.Google Scholar
  73. —. 1961. Research on free radicals in enzyme chemistry and in radiation biology. Pp. 337–350.In:M. S. Blois, Jr. (ed.), Free Radicals in Biological Systems. Academic Press, N. Y.Google Scholar
  74. — &A. Ehrenberg. 1958. The decay of X-ray induced free radicals in plant seeds and starch. Arkiv. Fysik14: 133–141.Google Scholar
  75. — &U. Lundqvist. 1957. Post-irradiation effects on X-ray-induced mutation in barley seeds. Hereditas43: 390–402.Google Scholar
  76. —,J. Moutschen-Dahmen, &M. Moutschen. 1957. Aberrations chromosomiques produites dan des graines par de hautes pressures d’oxygéne. Acta Chem. Scand.11: 1428–1429.Google Scholar
  77. Elkind, M. M. &H. Sutton. 1958. Ultraviolet mitigation of X-ray lethality in dividing yeast cells. Science128: 1082–1083.PubMedGoogle Scholar
  78. ——. 1959. Sites of action of lethal irradiation: Overlap in sites for X-ray, ultraviolet, photoreactivation, and ultraviolet protection and reactivation in dividing yeast cells. Rad. Res.10: 296–312.Google Scholar
  79. Ehrara, M. 1951. Nature de l’effet différé des rayons X sur l’acide désoxyribonucléique. Bull. Soc. Chim. Biol.33: 557–560.Google Scholar
  80. Evans, H. J. 1968. Repair and recovery at chromosome and cellular levels: Similarities and differences. Brookhaven Sympos. Biol.20: 111–133.Google Scholar
  81. Feinstein, R. N. (ed.). 1963. Implications of organic peroxides in radiobiology. Rad. Res. Suppl. 3.Google Scholar
  82. Forssberg, A. &N. Nybom. 1953. Combine effects cystein and irradiation on growth and cytology ofAllium cepa roots. Physiol. Plant.6: 78–95.Google Scholar
  83. —,R. Novak, G. Dreyfuss, &A. Pehap. 1960. The radiation sensitivity ofPhycomyces. Interaction of visible light and ionizing radiation. Rad. Res.13: 661–668.Google Scholar
  84. Furnica, M. &M. Spiridon. 1962. Speed of peroxidation of homogenized tissues during irradiation in vitro. Acad. Rep. Populare Roumine Studii Cercetari Biochem.5: 447–452.Google Scholar
  85. Gaur, B. K. &N. K. Notani. 1960. Effect of gibberellic acid on the radiationstunted seedlings of maize. Intern. J. Rad. Biol.3: 257–259.Google Scholar
  86. Gelin, O. E. V. 1953. Mitotische Störungsfrequenzen in Röntgen-bestrahlter Gerste. Agr. Hort. Gen.11: 66–81.Google Scholar
  87. —. 1956. Conditions affecting radiation-induced cytological change in barley. Agr. Hort. Gen.14: 137–147.Google Scholar
  88. Gerschman, R., D. L. Gilbert, S. W. Nye, P. Dwyer, &W. O. Fenn. 1954. Oxygen poisoning and X-irradiation. A mechanism in common. Science119: 623–626.PubMedGoogle Scholar
  89. Giguere, P. A. &J. A. Herman. 1959. Role of oxygen in radiation chemistry. Evidence for oxygen intermediates in gases, liquids, and solids. Rad. Res. Suppl.1: 149–163.Google Scholar
  90. Giles, N. H., Jr., &H. P. Riley. 1949. The effect of oxygen on the frequency of X-ray induced chromosomal rearrangements inTradescantia microspores. Proc. Nat. Acad. Sci. (Wash.)35: 640–646.Google Scholar
  91. ——. 1950. Studies on the mechanism of the oxygen effect on the radiosensitivity ofTradescantia chromosomes. Proc. Nat. Acad. Sci. (Wash.)36: 337–344.Google Scholar
  92. Gillies, N. E. &T. Alper. 1959. Reduction in the lethal effects of radiations onEscherischia coli B by treatment with chloramphenicol. Nature183: 237–238.PubMedGoogle Scholar
  93. Gladstone, J. S. &A. W. S. Hunter. 1959. Effects of seed moisture content and post-irradiation storage on the growth and survival of X1 tomato plants. Canad. J. Genet. Cytol.1: 339–346.Google Scholar
  94. Glass, H. B. 1950. The effects of supplementary treatment with infrared radiation on X-ray-induced lethals and chromosome aberrations in females ofDrosophila melanogaster. Genetics35: 109–110.Google Scholar
  95. Gol’Dat, S. U. 1962. Relationship between the effect of combines ultraviolet and X-ray treatment ofStreptomyces aureofaciens and the character of the treatment. Doklady Nauk Akad. Sci.139: 219–231.Google Scholar
  96. Gordon, S. A. 1957. The effects of ionizing radiations on plants: Biochemical and physiological aspects. Quart. Rev. Biol.32: 3–14.PubMedGoogle Scholar
  97. -. 1963. Potentiation of X-ray-induced tumor regression by far-red light. Research and Development in Progress. A.E.C. TID 4201. Pp. 61–62.Google Scholar
  98. —. 1964. Oxidative phosphorylation as a photomorphogenic control. Quart. Rev. Biol.39: 19–34.Google Scholar
  99. -,R. Stutz, &R. Weber. 1951. Phytoradiology. Pp. 144–151.In: Biological and Medical Division Quarterly Rept. 1949–1950. Argonne Nat. Lab. 4401.Google Scholar
  100. — &K. Surrey. 1960. Red and far-red action on oxidative phosphorylation. Rad. Res.12: 325–339.Google Scholar
  101. Gray, L. H. 1954. Conditions which affect the biological damage resulting from exposure to ionizing radiation. Acta Radiol.41: 63–83.PubMedGoogle Scholar
  102. —. 1959. Cellular radiobiology. Rad. Res. Suppl.1: 73–101.Google Scholar
  103. Green, J. &D. McHale. 1965. Quinones related to vitamin E. Pp. 261–315.In:R. A. Morton (ed.), Biochemistry of Quinones. Academic Press, N. Y.Google Scholar
  104. Gunckel, J. E. &A. H. Sparrow. 1961. Ionizing radiations: Biochemical, physiological, and morphological aspects of their effects on plants. Handb. Pflanzenphysiol.16: 555–611.Google Scholar
  105. Gunter, S. E. &H. I. Kohn. 1958. Post-irradiation temperature and X-ray sensitivity in microorganisms. Bacti. Proc.1958: 34.Google Scholar
  106. Haber, A. H. &M. L. Randolph. 1967. Gamma-ray-induced ESR signals in lettuce: Evidence for seed hydration-resistant and -sensitive free radicals. Rad. Bot.7: 17–28.Google Scholar
  107. Harle, J. R. 1963. Modification of radiobiological oxygen effects in very dry barley seeds. Thesis, Ph.D., Washington State Univ., Pullman.Google Scholar
  108. Harris, R. J. C. (ed.), 1961. The Initial Effects of Ionizing Radiation on Cells. Academic Press, N. Y.Google Scholar
  109. Haugaard, N. 1968. Cellular mechanisms of oxygen toxicity. Physiol. Revs.48: 311–373.Google Scholar
  110. Harve, A., Z. M. Bacq, &H. Betz. 1960. Chemical modification of the lethal effect of X-irradiation and the mechanism of the action. Proc. 6 Intl. Cong. Radiol. London. Pp. 169–170.Google Scholar
  111. Hillman, W. S. 1967. The physiology of phytochrome. Annu. Rev. Plant Physiol.18: 301–324.Google Scholar
  112. Hollaender, A. 1952. Physical and chemical factors modifying the sensitivity of cells to high energy and ultraviolet radiation. Pp. 285–295.In:J. J. Nickson (ed.), Symposium on Radiobiology. The Basic Aspects of Radiation Effects on Living Systems. John Wiley & Sons, N. Y.Google Scholar
  113. — &R. F. Kimbaix. 1956. Modification of radiation-induced genetic damage. Nature177: 726–730.PubMedGoogle Scholar
  114. — &G. E. Stapleton. 1954. Modification of radiation damage after exposure to X-rays. Brit. J. Radiol.27: 117–121.PubMedGoogle Scholar
  115. ——. 1956. Studies on protection by treatment before and after exposure to X and gamma radiations. Sympos. on Peaceful Uses of Atomic Energy. United Nations, N. Y.2: 106–113.Google Scholar
  116. Hollo, Z. M. &S. Z. Zlatarov. 1960. The prevention of X-ray death by selenium salts given after irradiation. Naturwiss.47: 328.Google Scholar
  117. Holmsen, T. W., H. J. Teas, &A. L. Koch. 1964. Inhibition of geotropism by ionizing radiation: Reversal of the inhibition by auxins. Rad. Bot.4: 413–416.Google Scholar
  118. Howard-Flanders, P. 1960. Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. Nature186: 485–487.PubMedGoogle Scholar
  119. —. 1961. Factors affecting radiation injury to DNA in bacteria and bacteriophage systems. Brookhaven Sympos. Biol.14: 18–31.PubMedGoogle Scholar
  120. —. 1965. Molecular mechanisms in the repair of irradiated DNA. Japan J. Genetics (Suppl.)40: 256–263.Google Scholar
  121. —,J. Levin, &L. Theriot. 1963. Reactions of deoxyribonucleic acid radicals with sulfhydryl compounds in X-irradiated bacteriophage systems. Rad. Res.18: 593–606.Google Scholar
  122. Hyde, B. B. &R. L. Paliwel. 1958. Studies on the role of cations in the structure and behavior of plant chromosomes. Am. J. Bot.45: 433–438.Google Scholar
  123. Irvine, V. C. 1939. Comparative effects on primordial tissues of X-radiation and treatment with certain growth-promoting substances. J. Colo.-Wyo. Acad. Sci.2: 29.Google Scholar
  124. Jackson, W. O. 1959. The life span of mutagens produced in cells by irradiation. Pp. 190–208. In:J. H. Martin (ed.), Radiation Biology. Buttersworth Sci. Public, London.Google Scholar
  125. Jacobson, B. S. 1957. Evidence for recovery from X-ray damage inChlamydomonas. Rad. Res.7: 394–406.Google Scholar
  126. —. 1961. Reversal of radiation damage in algae. Sci. Rpt. ORO-465. Univ. Texas, Austin.Google Scholar
  127. James, A. P. 1968. Lethal sectoring in yeast. Brookhaven Sympos. Biol.20: 77–97.Google Scholar
  128. Johansen, I. &P. Howard-Flanders. 1965. Macromolecular repair and freeradical scavengering in the protection of bacteria against X-rays. Rad. Res.24: 184–200.Google Scholar
  129. Jonard, R. 1960. Action protectrice de l’acide ascorbique à l’egard de l’irradiation des tissus de crown gall de scorsonere par les rayons X. C. R. Acad. Sci. (Paris)250: 185–187.Google Scholar
  130. —. 1966. Étude de la restauration spontanée des tissus de topinambour par la technique des irradiations partielles. C. R. Acad. Sci. (Paris)263: 937–939.Google Scholar
  131. — &A. Kovoor. 1965. Sur l’action radiorestauratrice d’un facteur de croissance extrait de l’acid ribonucléique de levure. C. R. Acad. Sci. (Paris)260: 4592–4594.Google Scholar
  132. Kada, T. 1965. Modification of lethal and mutagenic radiation damages by genetic “repair” factors in bacteria. Japan. J. Genetics40 (Suppl.): 242–255.Google Scholar
  133. —,E. Brun, &H. Marcovich. 1960. Comparison de l’induction de mutants prototrophes par les rayons X et U. V. chez “Escherischiacoli” B/r Try. Ann. Inst. Pasteur99: 547–566.Google Scholar
  134. —,C. O. Doudney, &F. L. Haas. 1961. Some biochemical factors in X-ray-induced mutation in bacteria. Genetics46: 683–708.PubMedGoogle Scholar
  135. Kamra, O. P. &P. C. Kesavan. 1969. Modification of barley seed radiosensitivity with microwave radiation. I. Effect of moisture content and post-irradiation hydration. Rad. Bot.9: 443–448.Google Scholar
  136. Kanazer, D. T., O. Z. Cecuk, B. N. Krajincanic, &T. A. Hudnik. 1959. The recovery of X-irradiatedSalmonella typhimurium, by means of highly polymerized deoxyribonucleic acid (DNA). Bull. Inst. Nuclear Sci. “Boris Kidrich”9: 133–144.Google Scholar
  137. Kaplan, R. 1947. Einfluss tiefer Temperatur auf die Röntgenstrahlen-mutationsraten von ruhenden Gerstenkörner. Naturwiss.10: 316–317.Google Scholar
  138. Kapul’Tsevich, Y. G. 1967. Effect of temperature modifications on survival curves of yeast cells during post-irradiation. Soviet Radiobiol.7: 367–371.Google Scholar
  139. Kaufmann, B. P. &H. Gay. 1947. The influence of X-rays and near infra-red rays on recessive lethals inDrosophila melanogaster. Proc. Nat. Acad. Sci. (Wash.).33: 366–372.Google Scholar
  140. ——. 1948. The modifying action of near infrared radiation on the frequency of induced gene and chromosomal changes inDrosophila melano gaster. Genetics32: 112.Google Scholar
  141. — &A. Hoixaender. 1945. Alterations of the frequency of X-ray-induced chromosomal breaks by use of ultraviolet and near infrared radiation. Genetics30: 11–12.Google Scholar
  142. ——. 1946. Modification of the frequency of chromosomal rearrangements induced by X-rays inDrosophila. II. Use of ultraviolet radiation. Genetics31: 368–376.PubMedGoogle Scholar
  143. ——, &H. Gay. 1946. Modification of the frequency of chromosomal rearrangements induced by X-rays inDrosophila. I. Use of near-infrared radiation. Genetics31: 349–367.PubMedGoogle Scholar
  144. — &K. Wilson. 1949. Modification of the frequency of chromosomal rearrangements induced by X-rays inDrosophila. IV. Post treatment with near infrared radiation. Genetics34: 425–436.Google Scholar
  145. Key, J. &F. Wold. 1961. Some effects of 2,4-dichlorophenoxyacetic acid on the oxidation-reduction state of soybean seedlings. J. Biol. Chem.236: 549–553.PubMedGoogle Scholar
  146. Keifer, J. 1967. Influence of culture temperature on the X-ray sensitivity of barley roots. Rad. Bot.7: 55–65.Google Scholar
  147. Riga, M., Y. Ando, &H. Kake. 1955. Enhancement of radiobiological effect by malonic and maleic acids. Science122: 331–332.Google Scholar
  148. Kihlman, B. A. 1962. Different effects of 5-fluorodeoxyuridine and 5-bromodeoxyuridine on the frequency of chromatid aberrations obtained inVicia faha after irradiation with X-rays. Exp. Cell Res.27: 604–607.PubMedGoogle Scholar
  149. Kemball, R. F. 1955. The role of oxygen and peroxide in the production of radiation damage inParamecium. Ann. N. Y. Acad. Sci.59: 638–648.Google Scholar
  150. -. 1957a. Modification of the genetic effects of X-rays by treatment after irradiation. Proc. Intl. Genetics Sympos. Tokyo. Science Council Japan. Pp. 252–255.Google Scholar
  151. —. 1957b. Modification of the genetic effect of X-rays by treatment after irradiation. Cytologia Suppl.1: 252–255.Google Scholar
  152. —. 1958. Postirradiation modification of mutation after various radiations. Rad. Res.9: 138–139.Google Scholar
  153. —. 1966. Repair of premutational damage. Adv. Rad. Biol.2: 135–166.Google Scholar
  154. —,N. Gaither, &S. M. Wilson. 1959. Reduction of mutation by postirradiation treatment after ultraviolet and various kinds of ionizing radiations. Rad. Res.10: 490–497.Google Scholar
  155. King, G. S. 1949. Direct and transmitted X-ray effects on growth of tobacco callus in vitro. Am. J. Bot.36: 265–270.PubMedGoogle Scholar
  156. King, J. W. &A. W. Galston. 1961. Some effects of X-irradiation on the endogenous and auxin-induced growth of etiolated pea stem tissue. Pp. 238–244.In: Radiobiology. Butterworths Sci. Publ., London.Google Scholar
  157. Kirby-Smith, J. S. 1951. Effects of infra red irradiation on the frequency of X- and gamma-induced chromosomal aberrations inTradescantia pollen tubes. Genetics (Abstr.)36: 558–559.Google Scholar
  158. —,B. Nicoletti, &M. L. Gwynn. 1960. The induction of chromosomal aberrations inTradescantia pollen by combined X-ray and ultraviolet treatment. Genetics45: 996.Google Scholar
  159. — &M. L. Randolph. 1959. Production and lifetimes of radiation-induced free radicals in some molecules of biological importance. Pp. 11–24. In:I. Buzzatti-Traverse (ed.), Immediate and Low Level Effects of Ionizing Radiation. Pergamon Press, N. Y.Google Scholar
  160. Klein, D. T. &R. M. Klein. 1962. Effect of certain oxidizing and reducing compounds onNeurospora conidia. Neurospora Newsletter2: 9.Google Scholar
  161. Klein, R. M. 1969. Radiation-induced loss of capacity of plant cells to utilize auxin. Pp. 675–683.In:F. Wightman andG. Setterfield (eds.), Biochemistry and Physiology of Plant Growth Substances. Runge Press, Ottawa.Google Scholar
  162. — &P. C. Edsall. 1966. Substitution of redox chemicals for radiation in phytochrome-mediated photomorphogenesis. Plant Physiol.41: 949–952.PubMedGoogle Scholar
  163. — &D. T. Klein. 1962. Interaction of ionizing and visible radiation in mutation induction inNeurospora crassa. Am. J. Bot.49: 870–874.Google Scholar
  164. — &H. H. Vogel, Jr. 1956. Necessity for indoleacetic acid for the duplication of crown-gall tumor cells. Plant Physiol.31: 17–21.PubMedGoogle Scholar
  165. Klingmüller, W. 1959. Zur Moglichkeit eines nachträglichen Strahlenschutzes bei Samen vonVicia faba. Zeit. Naturforsch.14b: 268–272.Google Scholar
  166. -. 1962. Influence of graded moisture content on survival and back mutation rate of X-rayedNeurospora crassa conidia. Proc. Second Intl. Cong. Radiation Res., p. 197.Google Scholar
  167. Kocholaty, W. &J. Denson. 1957. The influence of visible light on the sulfhydryl content of yeast cells after ionizing and ultra-violet irradiation. Army Med. Res. Labs. Rpt. 72, pp. 1–11.Google Scholar
  168. Konzak, C. F. 1957. Genetic effects of radiation on higher plants. Quart. Rev. Biol.32: 27–45.PubMedGoogle Scholar
  169. -. 1961. Modification of induced genetic damage in seeds. Pp. 155–169.In: Effect of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency Symposium, Vienna.Google Scholar
  170. —,R. S. Caldecott, N. Delihas, &H. J. Curtis. 1957. The modification of radiation damage in dormant seeds. Rad. Res. (Abstr.)7: 326.Google Scholar
  171. —,H. J. Curatis, N. Delihas, &R. A. Nilan. 1960. Modification of radiation-induced damage in barley seeds by thermal energy. Canad. J. Gen. Cytol.2: 129–141.Google Scholar
  172. —,R. A. Nilan, J. R. Harle, &R. E. Heiner. 1961. Control of factors affecting the response of plants to mutagens. Brookhaven Sympos. Biol.14: 128–157.PubMedGoogle Scholar
  173. -,R. A. Nilan, R. R. Legault, &R. E. Heiner. 1961. Modification of induced genetic damage in seeds. Pp. 155–169.In: Effect of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency Symposium, Vienna.Google Scholar
  174. Korogodin, V. I. 1958. Some regularities in the post-irradiation changes in resting yeast cells. Biophysika3: 703–710.Google Scholar
  175. —,O. V. Malinovskii, N. A. Poriadkova, &N. A. Izmozherov. 1959. Reversibility of various forms of radiation injury in diploid yeast cells. Tsitologiia1: 306–314.Google Scholar
  176. — &T. G. Mamedov. 1960. Influence of irradiation plant seedlings on the growth of unirradiated seedlings. Biophysika5: 186–188.Google Scholar
  177. —,B. N. Tarusov, &A. K. Tambiev. 1959. Relation of recovery after irradiation to temperature, oxygen tension and concentration of cell suspension. Biophysika4: 224–227.Google Scholar
  178. Krahe, M., H. A. Kunkel, &H.-J. Schmermund. 1957. Über die Beeinflussbarkeit der biolozischen Strahlungwirkung durch applikation von Schutzstoffen nach der Bestrahlung. Strahlenther.102: 228–290.Google Scholar
  179. Kronstad, W. E., R. A. Nilan, &C. F. Konzak. 1959. The mutagenic effect of oxygen in barley seeds. Science129: 1618.PubMedGoogle Scholar
  180. Kryukova, L. M. &A. M. Kuzin. 1960a. Translocated effect of ionizing radiation in plants. Biophysika5: 513–516.Google Scholar
  181. ——. 1960b. Distant effect of ionizing radiation in an irradiated plant. Fiz. Rast.7: 220–222.Google Scholar
  182. Kumar, S. &A. T. Natarajan. 1965. Photodynamic action and post-irradiation modifying effects of méthylene blue and acridine orange in barley andVicia faba. Mutat. Res.2: 11–21.PubMedGoogle Scholar
  183. Kunkel, H. A. &G. Schubert. 1959. Effect of protective agents applied after irradiation. Prog. Nuclear Energy, VI2: 217–224.Google Scholar
  184. ——. 1960. Effects of protective agents applied after irradiation. Frauenklinik Bull. Univ. Hamburg.Google Scholar
  185. Kurabayashi, M. 1953. Effects of post temperature treatments upon the X-ray induced chromosomal aberrations. Cytologia18: 253–265.Google Scholar
  186. Kuzin, A. M. 1963. On the role of the disturbance of metabolic processes in the radiation damage of the cell. Intl. J. Rad. Biol.6: 211–220.Google Scholar
  187. — &V. A. Kopylov. 1960. Disturbance of oxidation-reduction processes in plant tissue under influence of ionizing radiation. Biophysika5: 810–814.Google Scholar
  188. Lamarque, P. 1952. La restauration en radiobiologie. Presse Med.60: 1039–1041.PubMedGoogle Scholar
  189. —. 1960. Neuere Untersuchungen über die Restauration von Strahlungsschäden. Strahlenther.111: 75–84.Google Scholar
  190. Langendorff, H. &K. Sommermeyer. 1953. Sensibilierung und Reaktivierung röntgenbestrahlter Coli-Bakterien durch Wärme, Zeit. Naturforsch.8b: 117–122.Google Scholar
  191. Laterjet, R. 1943. Action du froid sur la réparation des radiolésions chez une levure et chez une bactérie. C. R. Acad. Sci. (Paris)217: 186–188.Google Scholar
  192. —. 1951. Photo-restauration aprés irradiation X chez une bactérie lysogéne. C. R. Acad. Sci. (Paris)232: 1713–1715.Google Scholar
  193. —. 1954. Spontaneous and induced cell restaurations after treatments with ionizing and non-ionizing radiations. Acta Radiol.41: 84–100.Google Scholar
  194. — (ed.). 1958. Organic Peroxides in Radiobiology. Pergamon Press, N. Y.Google Scholar
  195. - &L. H. Gray. Definition of the terms “protection” and “restoration.” Acta Radiol.41: 61–62.Google Scholar
  196. Leopold, A. C. &K. V. Thimann. 1949. The effect of auxin on flower initiation. Am. J. Bot.36: 342–347.PubMedGoogle Scholar
  197. Levitt, J. &J. Dear. 1970. The role of membrane proteins in freezing injury and resistance. Pp. 149–174.In:G. E. W. Wolstenholme &M. O’Conner (eds.), Ciba Sympos. on the Frozen Cell. J. & A. Churchill Co., London.Google Scholar
  198. Lewis, S. E. &E. D. Wills. 1962. The destruction of -SH groups of proteins and amino acids by peroxides of unsaturated fatty acids. Biochem. Pharm.11: 901–912.Google Scholar
  199. Lockhaht, J. A. 1961. Interactions between gibberellins and various environmental factors on stem growth. Am. J. Bot.48: 516–525.Google Scholar
  200. Löfroth, G. A., A. Ehrenberg, &L. Ehrenberg. 1964. Analysis of radiationinduced electron spin resonance spectra in plant seeds. Rad. Bot.4: 455–467.Google Scholar
  201. Luchnik, N. V. 1948. Effect of yeast extract on irradiated organisms. Biokhim.40: 139–146.Google Scholar
  202. —. 1960a. The effect of yeast extracts on the mortality of irradiated rice and pea seedlings. Trudy Inst. Biol. Akad. Nauk SSSR Ural Filial.12: 93–118.Google Scholar
  203. —. 1960b. The reversibility of cytogenetic damage caused by radiation. Akad. Nauk SSSR1960: 1–16.Google Scholar
  204. Lyman, J. T. &R. H. Haynes. 1967. Recovery of yeast after exposure to densely ionizing radiation. Rad. Res. Suppl.7: 222–230.Google Scholar
  205. Ma, T. H. &S. Wolff. 1965. Far-red-induced mitotic delay and the apparent increase of X-ray induced chromatid aberration inTradescantia microspores. Rad. Bot.5: 293–298.Google Scholar
  206. Maisin, J., P. Dumont, &A. Dunjic. 1960. Yeast ribonucleic acid and its nucleotides as recovery factors in rats receiving an acute whole-body dose of X-rays. Nature186: 487–488.PubMedGoogle Scholar
  207. — &S. Masy. 1928. Mechanism of action of X-rays on seeds. C. R. Soc. Biol.98: 886–888.Google Scholar
  208. Maqsood, M. &J. K. Ashikawa. 1962. Post-irradiation protection and recovery. I. Effect of lipids on haematopoietic organs of X-irradiated male mice. Intl. J. Rad. Biol.4: 521–531.Google Scholar
  209. Marcenko, E. 1965. Restoration of irradiated algae after a period of darkness. Nature207: 542–543.PubMedGoogle Scholar
  210. Mathur, P. B. 1961. Reversal of gamma-ray-induced dormancy of potato tubers by gibberellic acid. Nature190: 547–548.PubMedGoogle Scholar
  211. Matsuura, H. &S. Tanifuji. 1962. Chromosome studies onTrillium kamtschaticum Pall. and its allies. XXVIII. Modifying effects of chloramphenicol on X-ray induced chromosome aberrations. J. Fac. Sci. Hokkaido Univ. Series V8: 157–172.Google Scholar
  212. Maxwell, L. R., J. H. Kempton, &V. M. Mosley. 1942. Effect of temperature and time on the X-ray sensitivity of maize seeds. J. Wash. Acad. Sci.32: 18–23.Google Scholar
  213. McElroy, W. D. &C. P. Swanson. 1951. The theory of rate processes and gene mutation. Quart. Rev. Biol.26: 348–363.PubMedGoogle Scholar
  214. McGrath, R. A. &R. W. Williams. 1966. Reconstruction in vivo of irradiatedEscherischia coli deoxyribonucleic acid: The rejoining of broken pieces. Nature212: 534–535.PubMedGoogle Scholar
  215. ——, &D. C. Swartzendruber. 1966. Breakdown of DNA in X-irradiatedEscherischia coli. Biophys. J.6: 113–122.PubMedGoogle Scholar
  216. Mericle, R. P., L. W. Mericle, &D. J. Montgomery. 1966. Magnetic fields and ionizing radiation: Effects and interactions during germination and early seedling development. Rad. Bot.6: 111–127.Google Scholar
  217. ———, &J. W. Campbell. 1964. Modification of radiation damage by post treatment with homogenous magnetic fields. Genetics50: 268–269.Google Scholar
  218. Merz, T., C. P. Swanson, &C. N. Homaltha. 1961. Radiosensitivity and the problem of chromosome breakage. Brookhaven Sympos. Biol.14: 53–61.PubMedGoogle Scholar
  219. Micke, A. &K. Wöhrmann. 1960. Atompraxis6: 308–316.Google Scholar
  220. Mika, E. S. 1952. Effect of indoleacetic acid on root growth of X-irradiated peas. Bot. Gaz.113: 285–293.Google Scholar
  221. Miletic, B., Z. Kucan, &L. Sasel. 1964. Synthesis of deoxyribonucleic acid in X-irradiated bacteria treated with chloramphenicol. Nature207: 311–312.Google Scholar
  222. Moh, C. C. &R. B. Wrnraow. 1959a. Non-ionizing radiant energy as an agent in altering the incidence of X-ray-induced chromatid aberrations. II. Reversal of the far-red potentiating effect inVicia by red radiant energy. Rad. Res.10: 13–19.Google Scholar
  223. ——. 1959b. Non-ionizing radiant energy as an agent in altering the incidence of X-ray-induced chromatid aberrations. III. Action spectrum of far-red potentiation. Rad. Res.11: 19–23.Google Scholar
  224. Mole, R. H. 1959. Some aspects of mammalian radiobiology. Rad. Res. Suppl.1: 124–148.Google Scholar
  225. Moore, J. H. &L. F. Hough. 1961. Influence of gamma irradiation and short-day inductive treatments on endogenous auxin levels and vegetative and reproductive growth in the strawberry. Plant Physiol. (Abstr.)36: liv.Google Scholar
  226. Moseley, B. E. B. 1968. The repair of damaged DNA in irradiated bacteria. Adv. Microbiol. Physiol.2: 173–194.Google Scholar
  227. Moutschen-Dahmen, M., J. Moutschen, &L. Ehrenberg. 1966a. On post irradiation modification of biological effects of neutrons. I. Effect of Mylaran on chromosome aberrations in neutron irradiated seeds. Rad. Bot.6: 251–264.Google Scholar
  228. ———. 1966b. On post irradiation modification of biological effects of neutrons. II. Effect of 5-fluorodeoxyuridine on chromosomal aberrations in neutron irradiated seeds. Rad. Bot.6: 425–431.Google Scholar
  229. Nadson, G. &A. Jolkevitch. 1926. The combined action of radium and chemical agents on plants. Ann. Roentgenol. Radiol.2: 11–39.Google Scholar
  230. — &A. J. Zolkevic. 1925. Kalium als antagonist der Röntgenstrahlen und das Radium. Biochem. Zeit.163: 457–463.Google Scholar
  231. Narayanaswami, S. 1967. Action of X-irradiation on plant tissues cultivated in vitro: Histophysiological responses. Pp. 64–67. In: Seminar on Plant Cell, Tissue, and Organ Culture. Univ. Delhi, India.Google Scholar
  232. Natarajan, A. T. &G. Ahnström. 1961. Oxygen saturation and dry seed irradiation. Naturwiss.48: 698–699.Google Scholar
  233. — &K. R. Narayanan. 1963. Post-irradiation modification of genetic effects in plant seeds. Pp. 413–424.In:F. H. Sobels (ed.), Repair from Genetic Radiation Damage. Macmillan and Co., N. Y.Google Scholar
  234. Neary, G. J. 1957. Dependence on oxygen and temperature of the sensitivity of broad bean roots to gamma-radiation. Nature180: 248–249.PubMedGoogle Scholar
  235. Nichols, C., Jr. 1942. The effect of age and irradiation on chromosome aberrations inAllium seed. Am. J. Bot.29: 755–759.Google Scholar
  236. Nilan, R. A. 1964. The Cytology and Genetics of Barley 1951–1962. Wash. State Univ. Press, Pullman.Google Scholar
  237. —,C. F. Konzak, J. R. Harle, &R. E. Heiner. 1962. Interrelations of oxygen, water, and temperature on the production of radiation-induced genetic effects in plants. Strahlenther. Suppl.51: 171–182.Google Scholar
  238. ——,R. R. Legault, &J. R. Harle. 1961. The oxygen effect in barley seeds. Pp. 139–154.In: Effects of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency, Vienna.Google Scholar
  239. Noyes, W. A., Jr. 1959. Oxygen effects in photochemical systems. Rad. Res. Suppl.1: 164–176.Google Scholar
  240. Okazawa, Y., M. Namtki, S. Yamashita, &A. Matsuyama. 1960. Enhancement of the over-all lethal effect of ionizing radiations on microorganisms by sodium chloride. Bull. Agric. Chem. Soc. Japan24: 235–242.Google Scholar
  241. Oliva, L., F. Missurale, &P. Valli. 1958. Effetti protettivi e terapeutici del D.P.N. su ratti irradiati con L.D. 100%. Minerva Med. (Torino)49: 1976–1977.Google Scholar
  242. Ord, M. G. &L. A. Stocken. 1963. Biochemical effects of X-irradiation and the sulphhydryl hypothesis: A reappraisal. Nature200: 136–138.PubMedGoogle Scholar
  243. Ormorod, M. G. &P. Alexander. 1962. Repair of radiation damage in a nucleoprotein by cysteamine. Nature193: 290–291.Google Scholar
  244. Packard, C. 1918. Differences in the action of radium on green plants in the presence and absence of light. J. Gen. Physiol.1: 37–41.Google Scholar
  245. —. 1930. The relation between division rate and the radiosensitivity of cells. J. Cancer Res.14: 359–369.Google Scholar
  246. Partanen, C. R. 1960. Suppression of radiation-induced tumorization in fern prethalli. Science131: 926–927.PubMedGoogle Scholar
  247. Patrick, M. H., R. H. Haynes, &R. B. Uretz. 1964. Dark recovery phenomena in yeast. I. Comparative effects with various inactivating agents. Rad. Res.21: 144–163.Google Scholar
  248. Patt, H. M. 1953. Protective mechanisms in ionizing radiation injury. Physiol. Revs.33: 35–76.Google Scholar
  249. — &A. M. Brues. 1954. The pathological physiology of radiation injury in the mammal. I. Physical and biological factors in radiation action. Pp. 919–958.In:A. Hollaender (ed.), Radiation Biology, Vol. I. McGraw-Hill Book Co., N. Y.Google Scholar
  250. Pihl, A. &L. Eldjarn. 1958. Pharmacological aspects of ionizing radiation and of chemical protection in mammals. Pharm. Rev.10: 437–474.PubMedGoogle Scholar
  251. Powers, E. L. 1961. Chemical species induced by X-rays in cells and their role in radiation injury. Pp. 91–106.In:R. J. C. Harris (ed.), The Initial Effects of Ionizing Radiation on Cells. Academic Press, N. Y.Google Scholar
  252. —,C. F. Ehret, &B. Smaller. 1960. The role of free radicals in the lethal effects of X-rays in dry bacterial spores. Pp. 351–366.In:M. S. Blois et al. (eds.), Free Radicals in Biological Systems. Academic Press, N. Y.Google Scholar
  253. — &B. Kaleta. 1960. Reduction of radiation sensitivity of dry bacterial spores with hydrogen sulfide. Science132: 959–960.PubMedGoogle Scholar
  254. —,R. B. Webb, &C. F. Ehret. 1960. Storage, transfer and utilization of energy from X-rays in dry bacterial spores. Rad. Res. Suppl.2: 94–121.Google Scholar
  255. ——, &B. F. Kaleta. 1960. Oxygen and nitric oxide as modifiers of radiation injury in spores ofBacillus megaterium. Proc. Nat. Acad. Sei. (Wash.)46: 984–993.Google Scholar
  256. Pratt, A. W., W. S. Moos, &M. Eden. 1955. Study of recovery at low temperature of X-irradiatedE. coli cells. J. Nat. Cancer Inst.15: 1039–1047.PubMedGoogle Scholar
  257. Protopopova, E. M. &L. N. Kublik. 1964. Elimination of the after-effects of radiations on plant cells. Radiobiol.4: 878–882.Google Scholar
  258. Raskova, H., D. Skrobal, &Z. Dienstbier. 1956. A note on the detoxification effects of ATP. Physiol. Bohem.5: 444–447.Google Scholar
  259. Riley, H. P. 1957. Chemical protection against X-ray damage to chromosomes. Genetics42: 593–600.PubMedGoogle Scholar
  260. Rothstein, A. 1959. Biochemical and physiological changes in irradiated yeast. Rad. Res. Suppl.1: 357–371.Google Scholar
  261. Rugh, R. 1958. The so-called “recovery” phenomenon and “protection” against X-irradiation at the cellular level. Biol. Bull.114: 385–393.Google Scholar
  262. Russell, M. A. 1937. Effects of X-rays onZea mays. Plant Physiol.12: 117–133.PubMedGoogle Scholar
  263. Sago, P. B. &B. M. Tolbert. 1957. Nuclear and electron paramagnetic resonance and its application to biology. Adv. Biol. Med. Physics5: 1–35.Google Scholar
  264. Salser, W. A. 1956. The effects of X-rays on plants. Trans. Kansas Acad. Sci.59: 412.Google Scholar
  265. Sax, K. 1941. The behavior of X-ray induced chromosomal aberrations inAllium cepa root tip cells. Genetics26: 418–425.PubMedGoogle Scholar
  266. —. 1947. Temperature effects on X-ray induced chromosome aberrations. Genetics32: 75–78.PubMedGoogle Scholar
  267. — &E. V. Enzmann. 1939. The effect of temperature on X-ray induced chromosome aberrations. Proc. Nat. Acad. Sci. (Wash.)25: 397–405.Google Scholar
  268. Schjeide, O. A., J. F. Mead, &L. S. Myers, Jr. 1956. Notions on sensitivity of cells to radiation. Science123: 1020–1022.PubMedGoogle Scholar
  269. Scholes, G. &J. Weiss. 1959. Oxygen effects and formation of peroxides in aqueous solutions. Rad. Res. Suppl.1: 177–189.Google Scholar
  270. Sermonti, G. &G. Mohpurgo. 1959. Action of manganous chloride on induced somatic segregation inPenicillium chrysogenum diploids. Genetics44: 437–447.PubMedGoogle Scholar
  271. Serres, F. J. de, H. V. Malling, &B. B. Webber. 1968. Dose-rate effects on inactivation and mutation induction inNeurospora crassa. Brookhaven Sympos. Biol.20: 56–76.Google Scholar
  272. Setlow, R. B. 1966. Repair of molecular damage to DNA. Oak Ridge Nat. Lab. Rpt. ORNL-P-2267.Google Scholar
  273. — &E. C. Pollard. 1962. Molecular Biophysics. Addison Wesley Publ. Co., Reading, Mass.Google Scholar
  274. Shapiro, N. I. &E. M. Bocharova. 1960. Two kinds of radiational after effects in barley seeds. Doklady Akad. Nauk. SSSR133: 262–265.Google Scholar
  275. Siegel, S. M. 1962. Observations on peroxide toxicity in seed germination. Physiol. Plant.15: 21–26.Google Scholar
  276. Sigard, M. A. &D. Schwartz. 1960. Dépendence du mode de conservation après irradiation et des radiolésions produites dans les graines d’orge sèches. C. R. Acad. Sci. (Paris)251: 897–899.Google Scholar
  277. Sire, M. W. &R. A. Nilan. 1957. The relation of oxygen to induced chromosome breakage inCrepis capillaris. Genetics42: 395.Google Scholar
  278. ——. 1959. The relation of oxygen posttreatment and heterochromatin to X-ray-induced chromosome aberration frequencies inCrepis capillaris. Genetics44: 124–136.PubMedGoogle Scholar
  279. Sisler, E. C. &W. H. Klein. 1961. Effect of red and far-red irradiations on nucleotide phosphate and adenosine triphosphate levels in dark-grown bean andAvena seedlings. Physiol. Plant.14: 115–123.Google Scholar
  280. Smith, G. F. &H. Kersten. 1942. Auxins and calines in seedlings from X-rayed seeds. Am. J. Bot.29: 785–791.Google Scholar
  281. Smith, K. C. &P. C. Hanawalt. 1969. Molecular Photobiology. Academic Press, N. Y.Google Scholar
  282. Smith, L. 1943. Relation of polyploidy to heat and X-ray effects in the cereals. J. Hered.34: 131–134.Google Scholar
  283. —. 1946. A comparison of the effects of heat and X-rays on dormant seeds of cereals with special reference to polyploidy. J. Agric. Res.73: 137–158.Google Scholar
  284. — &R. S. Caldecott. 1948. Modification of X-ray effects on barley seeds by pre- and post-treatment with heat. J. Hered.39: 173–176.Google Scholar
  285. ——, &B. Hayden. 1948. Experimental modification of the biological effect of X-rays. Genetics (Abstr.)33: 629.Google Scholar
  286. Sobels, F. H. 1956. Organic peroxides and mutagenic effects inDrosophila. Nature177: 979–982.Google Scholar
  287. —. 1958. The enhancing effect of post-treatment with cyanide on the mutagenic action of X-rays inDrosophila. Rad. Res. (Abstr.)9: 186.Google Scholar
  288. —. 1960a. Post-irradiation modification of the mutation rate inDrosophila by cyanide. Acta Physiol. Pharmol.9: 320–321.Google Scholar
  289. —. 1960b. The effect of post-treatment with cyanide in relation to doserate and oxygen tension. Intl. J. Rad. Biol.2: 68–90.Google Scholar
  290. —. 1963. Repair and differential radiosensitivity in developing germ cells ofDrosophila males. Pp. 179–197.In:F. H. Sobels (ed.), Repair from Genetic Radiation Damage. Macmillan, N. Y.Google Scholar
  291. Sommer, N. F., M. Creasy, R. J. Romani, &E. C. Maxie. 1963. Recovery of gamma irradiatedRhizopus stolonifer sporangiospores during auto-inhibition of germination. J. Cell. Comp. Physiol.61: 93–98.PubMedGoogle Scholar
  292. ————. 1964. An oxygen-dependent postirradiation restoration ofRhizopus stolonifer sporangiospores. Rad. Res.22: 21–28.Google Scholar
  293. —,J. H. Görtz, &E. C. Maxie. 1965. Prevention of repair in irradiatedRhizopus stolonifer sporangiospores by inhibitors of protein synthesis. Rad. Res.24: 390–397.Google Scholar
  294. Sparrman, D., L. Ehrenberg, &A. Ehrenberg. 1959. Scavengering of free radicals and radiation protection by nitric oxide in plant seeds. Acta Chem. Scand.13: 199–200.Google Scholar
  295. Stapleton, G. E. 1955. The influence of pretreatments and posttreatments on bacterial inactivation by ionizing radiations. Ann. N. Y. Acad. Sci.59: 604–618.PubMedGoogle Scholar
  296. —,D. Billin, &A. Hollaender. 1953. Recovery of X-irradiated bacteria at suboptimal incubation temperatures. J. Cell. Comp. Physiol.41: 345–357.Google Scholar
  297. —,A. J. Sbarra, &A. Hollaender. 1955. Some nutritional aspects of bacterial recovery from ionizing radiations. J. Bact.70: 7–14.PubMedGoogle Scholar
  298. Steffensen, D. 1955. Breakage of chromosomes inTradescantia with a calcium deficiency. Proc. Nat. Acad. Sci. (Wash.)41: 155–160.Google Scholar
  299. —. 1957. Effects of various cation imbalances on the frequency of X-rayinduced chromosome aberrations inTradescantia. Genetics42: 239–252.PubMedGoogle Scholar
  300. Stein, G. &R. Richter. 1961. The effect of X-ray irradiation in conjunction with red and far-red light on lettuce seed germination. Pp. 197–199.In: Effect of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency, Vienna.Google Scholar
  301. Sternheimer, E. P. 1953. Effects of X-irradiation on the growth of certain plant tissues in vitro. Thesis, Ph.D., Univ. Michigan, Ann Arbor.Google Scholar
  302. Stone, W. S. 1956. Indirect effects of radiation on genetic material. Brookhaven Sympos. Biol.8: 171–190.PubMedGoogle Scholar
  303. Strangeways, T. S. &H. B. Fell. 1927. Influence of low temperature on recovery from X-rays. Proc. Roy. Soc. London.B 102: 9–11.Google Scholar
  304. Swanson, C. P. 1944. X-ray and ultraviolet studies on pollen tube chromosomes. I. The effect of ultraviolet (2537 Å) on X-ray induced chromosome aberrations. Genetics29: 61–68.PubMedGoogle Scholar
  305. —. 1948. The differential effects of combined radiations on chromosome breakage and mutation rate. Science107: 458.Google Scholar
  306. —. 1949. Further studies on the effect of infra-red radiation on X-rayinduced chromatid aberrations inTradescantia. Proc. Nat. Acad. Sci. (Wash.)35: 237–244.Google Scholar
  307. —. 1952. The effects of supplementary factors on the radiation-induced frequency of mutations inAspergillus terreus. J. Cell. Comp. Physiol.39 (Suppl. 1): 27–38.Google Scholar
  308. —,A. Hollaender, &B. N. Kaufmann. 1948. Modification of the X-ray and ultraviolet induced mutation rate inAspergillus terreus by pretreatment with near infrared radiation. Genetics33: 429–437.PubMedGoogle Scholar
  309. ——. 1946a. The frequency of X-ray induced chromatid breaks inTradescantia as modified by near infrared radiation. Biol. Bull.91: 242.Google Scholar
  310. ——. 1946b. The frequency of X-ray-induced chromatid breaks inTradescantia as modified by near infrared radiation. Proc. Nat. Acad. Sci. (Wash.)32: 295–302.Google Scholar
  311. —,C. S. Rupert, &H. T. Yost, Jr. 1953, Infrared absorbtion and temperature studies on the buds and chromosomes ofTradescantia paludosa. Am. J. Bot.40: 557–565.Google Scholar
  312. — &H. T. Yost, Jr. 1951. The induction of activated, stable states in the chromosomes ofTradescantia by infrared and X-rays. Proc. Nat. Acad. Sci. (Wash.)37: 796–802.Google Scholar
  313. Tallenttre, A. &D. J. G. Davies. 1960. A post-irradiation oxygen effect in bacterial spores and its dependence on water content. Exp. Cell. Res.24: 148–150.Google Scholar
  314. — &N. A. Dickinson. 1962. Studies on the post-irradiation oxygen effect in bacterial spores. J. Pharm. Pharm. Suppl.14: 127T-128T.Google Scholar
  315. ——, &J. H. Collett. 1963. A dependence on water content of bacterial efficiency of gamma-radiation. J. Pharm. Pharm. Suppl.15: 180T-181T.Google Scholar
  316. —, &E. L. Powers. 1963. Modification of sensitivity to X-irradiation by water inBacillus megaterium. Rad. Res.20: 270–287.Google Scholar
  317. Tanada, T. 1969. An early lesion from low doses of X-irradiation in plant cells. Rad. Res.37: 103–107.Google Scholar
  318. Tanooka, H. 1965. Modifications of the inactivation of bacterial spores and their transforming DNA by ionizing radiations. Jap. J. Genetics40 (Suppl.): 229–241.Google Scholar
  319. Taranova, E. A. 1965. Changes in the viability of pollen as influenced by the environment and gamma-radiation. Ioniz. Izluch Biol. Akad. Nauk Latvia SSSR Inst. Biol., pp. 103–115.Google Scholar
  320. Tascher, R. W. 1929. Experiments with X-ray treatments in the seeds of certain crop plants. Thesis, Ph.D. Univ. Missouri, Columbia.Google Scholar
  321. Tsarapkin, L. S. 1963. Effect of radiation-protective substances used after irradiation on the frequency of chromosome aberrations. Trudy Mosk. Obshch. Ispyt. Prirody Otd. Biol.7: 213–219.Google Scholar
  322. —. 1965. Classification of substances affecting post-irradiation recovery. Radiobiol. Inform. Bull.1965: 36–38.Google Scholar
  323. Tushynakova, M. M. 1958. The role of the temperature factor in X-irradiation. Zhur. Obshch. Biol.19: 265–272.Google Scholar
  324. Uretz, R. B. 1955. Additivity of X-rays and ultraviolet light in the inactivation of haploid and diploid yeast. Rad. Res.2: 240–252.Google Scholar
  325. Vlasyuk, P. A., Z. M. Klimovitskaya, &E. S. Kosmatii. 1956. Effects of small doses of ionizing radiations on oxidation-reduction processes in plants. Doklady Akad. Nauk SSSR106: 731–734.Google Scholar
  326. Wainwright, S. D. &A. Nevill. 1955. Some effects of post-irradiation treatment with metabolic inhibitors and nutrients upon X-irradiated spores ofStrepto myces. J. Bact.70: 547–551.PubMedGoogle Scholar
  327. Webb, K. L. &R. Hodgson. 1960. Some effects of ionizing radiation on translocation in plants. Science132: 1762–1763.PubMedGoogle Scholar
  328. Webb, R. B., E. L. Powers, &C. F. Ehret. 1960. Thermorestoration of radiation damage in dry bacterial spores. Rad. Res.12: 682–693.Google Scholar
  329. Weijer, J. 1963. Radiation protection by calcium gluconate and recovery of X-irradiated conidia ofNeurospora crassa. Rad. Res.20: 227–246.Google Scholar
  330. Westergaard, M. 1957. Chemical mutagenesis in relation to the concept of the gene. Experientia13: 224–234.PubMedGoogle Scholar
  331. Winter, H. 1954. Der einfluss von Wirkstoffen, von Röntgen und Elektronenstrahlung auf die Cambiumtätigkeit vonBeta vulgarts. Planta44: 636–638.Google Scholar
  332. Withrow, R. B. &C. C. Moh. 1957. Nonionizing radiant energy as an agent in altering the incidence of X-ray-induced chromatid aberrations. I. Effects of far-red and infrared radiant energy onTradescantia andVicia. Rad. Res.6: 491–500.Google Scholar
  333. Wolff, S. 1959a. Studies on the biochemical nature of intergenic mutations. Proc. 9 Intl. Bot. Cong.2a: 40–41.Google Scholar
  334. —. 1959b. Interpretation of induced chromosome breakage and rejoining. Rad. Res. Suppl.1: 453–462.Google Scholar
  335. —. 1960a. Problems of energy transfer in radiation-induced chromosome damage. Rad. Res. Suppl.2: 122–132.Google Scholar
  336. —. 1960b. Radiation studies on the nature of chromosome breakage. Am. Natur.94: 85–93.Google Scholar
  337. —. 1960c. Post-irradiation storage and the growth of barley seedlings. Rad. Res.12: 484.Google Scholar
  338. —. 1961. Some post irradiation phenomena that affect the induction of chromosome aberrations. J. Cell. Comp. Physiol. Suppl. 1.58: 151–162.PubMedGoogle Scholar
  339. —. 1963. Radiation-induced Chromosome Aberrations. Columbia Univ. Press, N. Y.Google Scholar
  340. — &R. C. von Borstel. 1954. The effects of pre- and post-irradiation centrifugation on the chromosomes ofTradescantia andVicia. Proc. Nat. Acad. Sci. (Wash.)40: 1138–1141.Google Scholar
  341. — &H. E. Luippold. 1955. Metabolism and chromosome-break rejoining. Science122: 231–232.PubMedGoogle Scholar
  342. ——. 1958. Modification of chromosomal aberration yield by post-irradiation treatment. Genetics43: 493–501.PubMedGoogle Scholar
  343. ——. 1960. On the apparent synergistic effect of far-red and X-rays in the production of chromatid aberrations. Pp. 457–460. In:B. C. Christensen &B. Buchmann (eds.), Progress in Photobiology. Elsevier Publ. Co., Amsterdam.Google Scholar
  344. — &A. M. Sicard. 1961. Post-irradiation storage and the growth of barley seedlings. Pp. 171–178.In: Effects of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency, Vienna.Google Scholar
  345. Wood, T. H. 1954. Influence of temperatures and phase state on X-ray sensitivity of yeast. Arch. Biochem. Biophys.51: 157–167.Google Scholar
  346. —. 1958. Cellular radiobiology. Annu. Rev. Nuclear Sci.8: 343–386.Google Scholar
  347. —. 1959. Inhibition of cell division. Rad. Res. Suppl.1: 332–346.Google Scholar
  348. Yamaguchi, H. 1962. The effects of post treatment with cysteine and sodium hydrosulfite on the radiation-induced injury and mutation in rice. Ikushugaku Zasshi12: 8–12.Google Scholar
  349. Yamamota, G. 1959. Effects of radiation on nucleic acid metabolism in mice. II. Effect of β-mercapto ethylamine-HCl (MEA) and β-aminoethylisothiuronium-HBr (AET) on nucleic acid content in the thymus, spleen and testis. Nippon Igaku Hoshasen Gakkai Zasshi19: 1003–1011.Google Scholar
  350. Yost, H. T., Jr. 1950. An analysis of combined infra-red and X-ray effect onTradescantia chromosomes. Genetics (Abstr.)35: 700.Google Scholar
  351. — 1951. The frequency of X-ray-induced chromosome aberrations inTradescantia as modified by near infrared radiation. Genetics36: 176–184.PubMedGoogle Scholar
  352. — 1952. The effect of intensity of infrared on X-ray induced chromosome aberrations inTradescantia. Genetics37: 457–568.PubMedGoogle Scholar
  353. Zhuravlev, A. I. 1960. The role of antioxidants in early radiobiological effects. Akad. Nauk SSSR Inst. Biol. Fiz.1960: 55–65.Google Scholar
  354. Zimmer, K. G. 1959. Evidence for free-radical production in living cells exposed to ionizing radiation. Rad. Res. Suppl.1: 519–529.Google Scholar
  355. —,L. Ehrenberg, &A. Ehrenberg. 1957. Nachweis langlebiger magnitscher Zentren in bestrahlten biologischen Medien und deren Bedeutung für die Strahlenbiologie. Strahlenther.103: 3–15.Google Scholar

Copyright information

© The New York Botanical Garden 1971

Authors and Affiliations

  • Richard M. Klein
    • 1
  • Deana T. Klein
    • 2
  1. 1.Department of BotanyUniversity of VermontBurlington
  2. 2.Department of BiologySt. Michael’s CollegeWinooski

Personalised recommendations