Journal d’Analyse Mathématique

, Volume 87, Issue 1, pp 433–450 | Cite as

Composition operators on a local Dirichlet space



Composition Operator Bergman Space Carleson Measure Dirichlet Space Essential Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Aleman,Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Amer. Math. Soc.115 (1992), 97–104.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. B. Gamett,Bounded Analytic Functions, Academic Press, New York, 1981.Google Scholar
  3. [3]
    D. Luecking,A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc.87 (1983), 656–660.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    B. D. MacCluer and J. H. Shapiro,Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math.38 (1986), 878–906.MATHMathSciNetGoogle Scholar
  5. [5]
    Z. Nehari,Conformai Mapping, McGraw-Hill, New York, 1952.Google Scholar
  6. [6]
    R. Nevanlinna,Remarques sur le lemme de Schwarz, C. R. Acad. Sci. Paris188 (1929), 1027–1029.Google Scholar
  7. [7]
    S. Richter,A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc. 328(1991), 326–349.CrossRefGoogle Scholar
  8. [8]
    S. Richter and C. Sundberg,A formula for the local Dirichlet integral. Michigan Math. J.38 (1991), 355–379.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Sarason,Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.Google Scholar
  10. [10]
    D. Sarason,Local Dirichlet spaces as de Branges-Rovnyak spaces, Proc. Amer. Math. Soc.125 (1997), 2133–2139.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. H. Shapiro,The essential norm of a composition operator, Ann. of Math.125 (1987), 375–404.CrossRefMathSciNetGoogle Scholar
  12. [12]
    J. H. Shapiro,Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.MATHGoogle Scholar
  13. [13]
    N. Zorboska,Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc.126 (1998), 2013–2023.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2002

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California BerkeleyCAUSA
  2. 2.Departamento de MatemáticaUniversidade de LisboaLisboaPortugal

Personalised recommendations