Journal d'Analyse Mathématique

, Volume 87, Issue 1, pp 37–75 | Cite as

On the spectrum of lattice Schrödinger operators with deterministic potential

  • J. Bourgain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    J. Bourgain,Positive Lyapounov exponents for most energies, inGeometric Aspects of Functional Analysis, Lecture Notes in Math.1745, Springer, Berlin, 2000, pp. 37–66.CrossRefGoogle Scholar
  2. [B2]
    J. Bourgain,Estimates on Green’s functions, Localization and the quantum kicked rotor model, Ann. of Math. (2) (2002), to appear.Google Scholar
  3. [BG]
    J. Bourgain and M. Goldstein,On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2)152 (2000), 835–879.MathSciNetCrossRefGoogle Scholar
  4. [BGS]
    J. Bourgain, M. Goldstein and W. Schlag,Anderson localization for Schrödinger operators on Z with potentials given by the skew-shift, Comm. Math. Phys. to appear.Google Scholar
  5. [GS]
    M. Goldstein and W. Schlag,Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math. (2)154 (2001), 155–203.MathSciNetCrossRefGoogle Scholar
  6. [J]
    S. Jitomirskaya,Metal-insulator transition for the almost Mathieu operator, Ann. of Math. (2)150 (1999), 1159–1175.MathSciNetCrossRefGoogle Scholar
  7. [L]
    Y. Last,Almost everything about the almost Mathieu operator I, inProc. XI Internat. Congr. Math. Phys. (Paris 1994), Internat. Press, Cambridge, MA, 1995, pp. 366–372.Google Scholar
  8. [Mil]
    J. Milnor,On the Betti numbers of real varieties, Proc. Amer. Math. Soc.15 (1964), 275–280.MathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2002

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations