Skip to main content
Log in

The Fe−Ti (Iron-Titanium) system

  • Provisional
  • Fe−Ti
  • Published:
Bulletin of Alloy Phase Diagrams

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Cited References

  • 09POR: Portevin, M. A., “Contribution to the Study of Special Ternary Steels”,Rev. Metall., Paris:6, 1354–1362 (1909) in French.

    Google Scholar 

  • 14LAM: Lamort, J., “On Titanium Alloys”,Ferrum:11(8), 225–234 (1914) in German.

    Google Scholar 

  • 30MIC: Michel, A. and Benazet, P., “Influence of Titanium on the Transformation Points of Steel”,Rev. Metall., Paris:27, 326–333 (1930) in French.

    Google Scholar 

  • 34GAE: Gaev, I.S., as cited in [Hansen],Metallurg: 19–33 (1934).

  • 35SVE: Svechnikov, V. N. and Gridnev, V.N., “Effect of Titanium on Polymorphic Transformations in Iron”,Domez: (2), 41–43 (1935) in Russian:Chem. Abstr.: 29, 6547 (1935).

    Google Scholar 

  • 36JEL: Jellinghaus, W., “The Crystal Structure of Fe3Ti”,Z. Anorg. Allg. Chem.:227, 62 (1936) in German.

    Article  Google Scholar 

  • 38TOF: Tofaute, V. W. and Buettinghaus, A., “The Fe-rich Corner of the Fe−Ti−C System”,Arch. Eisenhuettenw.:12, 33–37 (1938) in German.

    Google Scholar 

  • 38WIT: Witte, H. and Wallbaum, H. J., “Thermal and X-ray Study of the Iron-Titanium System”,Z. Metallkunde:30(3), 100–102 (1938) in German.

    Google Scholar 

  • 39LAV: Laves, F. and Wallbaum, H. J., “Crystal Chemistry of Titanium Alloys”,Naturwissenschaften:27, 674 (1939) in German.

    Article  ADS  Google Scholar 

  • 41WAL: Wallbaum, H. J., “The Systems of Titanium, Zirconium, Niobium, and Tantalum with Iron”,Arch. Eisenhuettenw.:14(10), 521–526 (1941) in German.

    Google Scholar 

  • 48PET: Peter, W. and Fischer, W. A., “Relation Between the Phase Diagrams and Mechanical Properties, Especially Durability, of Fe−Nb and Fe−Ti Alloys”,Arch. Eisenhuettenw.:19, 161–168 (1948) in German.

    Google Scholar 

  • 50DUW: Duwez, P. and Taylor, J. L., “The Structure of Intermediate Phases in Alloys of Titanium with Iron, Cobalt, and Nickel”,Trans. Am. Inst. Min. Met. Eng.:188, 1173–1176 (1950).

    Google Scholar 

  • 51FRE: Fretague, W. I., Barker, C. S. and Peretti, E. A., as cited in [Hansen], USAEC Publ. AFTR 6597 Parts I and II (1951–1952).

  • 51MCQ: McQuillan, A. D., “The Application of Hydrogen Equilibrium-Pressure Measurements to the Investigation of Titanium Alloy Systems”,J. Inst. Met.:79, 73–88 (1951).

    Google Scholar 

  • 51WOR: Worner, H. W., “The Constitution of Titanium-rich Alloys of Iron and Titanium”,J. Inst. Met.:79, 173–188 (1951).

    Google Scholar 

  • 52ROE: Roe, W. P. and Fishel, W. P., “Gamma Loop Studies in the Fe−Ti, Fe−Cr, and Fe−Ti−Cr Systems”,Trans. Am. Soc. Met.:44, 1030–1041 (1952).

    Google Scholar 

  • 52ROS: Rostoker, W., “Observations on the Occurrence of Ti2 X Phases”,Trans. Am. Inst. Min. Met. Eng.:194, 209–210 (1952).

    Google Scholar 

  • 52VAN: VanThyne, R. J. and Kessler, H. D. and Hansen, M., “The Systems Titanium-Chromium and Titanium-Iron”,Trans. Am. Soc. Met.:44, 974–989 (1952).

    Google Scholar 

  • 53DUW: Duwez, P., “The Martensite Transformation Temperature in Titanium Binary Alloys”,Trans. Am. Soc. Met.:45, 935 (1953).

    Google Scholar 

  • 53LEV: Levinger, B. W., “Lattice Parameter of Beta Titanium at Room Temperature”,Trans. Am. Inst. Min. Met. Eng.:197, 195 (1953).

    Google Scholar 

  • 54NIS: Nishimura, H. and Kamei, K., “Investigation of the System Ti−Fe−Al Alloys, Part I. Studies on Ti−Fe System”,Bull. Eng. Res. Inst. Kyoto U.:6, 38–42 (1954) in Japanese.

    Google Scholar 

  • 54POL: Polonis, D. H. and Parr, J. G., “Phase Transformations in Titanium-Rich Alloys of Iron and Titanium”,Trans. Am. Inst. Min. Met. Eng.:200, 1148–1154 (1954).

    Google Scholar 

  • 55KUB: Kubaschewski, O. and Dench, W. A., “The Heats of Formation in the Systems Titanium-Aluminium and Titanium-Iron”,Acta Met.:3, 339–346 (1955).

    Article  Google Scholar 

  • 55POL: Polonis, D. H. and Parr, J. G., “Martensite Formation in Powders and Lump Specimens of Ti−Fe Alloys”,Trans. Am. Inst. Min. Met. Eng.:203, 64 (1955).

    Google Scholar 

  • 55SUT: Sutton, A. L. and Hume-Rothery, W., “The Lattice Spacings of Solid Solutions of Titanium, Vanadium, Chromium, Manganese, Cobalt and Nickel in α-Iron”,Philos. Mag.:46(383), 1295–1309, (1955).

    Google Scholar 

  • 55VAN: Van Thyne, R. J. and Jaffe, L. D., “Discussion of Phase Transformations in Titanium-Rich Alloys of Iron and Titanium”,Trans. Am. Inst. Min. Met. Eng.:203 (1955). (See also [55POL])

  • 56ENC: Ence, E. and Margolin, H., “Re-Examination of Ti−Fe and Ti−Fe−O Phase Relations”,Trans. Am. Inst. Min. Met. Eng.:206, 572 (1956).

    Google Scholar 

  • 56KOR: Kornilov, I. I. and Boriskina, N. G., “Phase Diagram of the System Ti−Fe”,Dokl. Akad. Nauk SSSR:108(6), 1083 (1956) in Russian.

    Google Scholar 

  • 56YOS: Yoshida, H., “On the Crystal Structure of the Intermediate Phase ω in Titanium-Iron”,J. Jpn. Inst. Met.:20, 292 (1956).

    Google Scholar 

  • 57HEL: Hellawell, A. and Hume-Rothery, W., “The Constitution of Alloys of Iron and Manganese with Transition Elements of the First Long Period”,Phil. Trans. Roy. Soc., London:249, 426–459 (1957).

    Article  ADS  Google Scholar 

  • 57PHI: Philip, T. V. and Beck, P. A., “CsCl-Type Ordered Structure in Binary Alloys of Transition Elements”,Trans. Am. Inst. Min. Met. Eng.:209, 1269–1271 (1957).

    Google Scholar 

  • 58BAG: Bagariatskii, Yu. A., Nosova, G. I. and Tagunova, T. V., “Factors in the Formation of Metastable Phases in Titanium-Base Alloys”,Dokl. Akad. Nauk SSSR:122, 593 (1958) in Russian; TR:Sov. Phys. Dokl.: 3, 1014 (1958).

    Google Scholar 

  • 58SIL: Silcock, J. M., “An X-Ray Examination of the ω Phase in TiV, TiMo and TiCr Alloys”,Acta Metall.:6, 481 (1958).

    Article  Google Scholar 

  • 59ARR: Arrott, A. and Noakes, J. E., “Saturation Magnetization and Curie Points in Dilute Alloys of Iron”,J. Appl. Phys., Suppl.:30(4), 97S-98S (1959).

    Article  ADS  Google Scholar 

  • 59DWI: Dwight, A. E., “CsCl-Type Equiatomic Phases in Binary Alloys of Transition Elements”,Trans. Am. Inst. Min. Met. Eng.:215, 283–286 (1959).

    Google Scholar 

  • 59MOL: Moll, S. H. and Ogilivie, R. E., “Solubility and Diffusion of Titanium in Iron”,Trans. Am. Inst. Min. Met. Eng.:215, 613 (1959).

    Google Scholar 

  • 59MUR: Murakami, Y., Kimura, H., and Nishimura, Y., “An Investigation on the Titanium-Iron-Carbon System”,Trans. Nat. Res. Inst. Met. Jpn.:1(1), 7–21 (1959).

    Google Scholar 

  • 60GRI: Gridnev, Y. N., Petrov, Yu. N., Rafalovskiy, V. A. and Trefilov, V. I., “Investigation of ω Phase Formation in Titanium Alloys”,Vopr. Fiz. Met. Metalloved. AN UkrSSR Sb. Nauchn. Rabot: (11), 82–86 (1960).

    Google Scholar 

  • 60NEV: Nevitt, M. V., “Magnetization of the Compound TiFe”,J. Appl. Phys.:31(1), 155–157 (1960).

    Article  ADS  Google Scholar 

  • 60PIE: Pietrokowsky, P. and Youngkin, F. G., “Ordering in the Intermediate Phases TiFe, TiCo, and TiNi”,J. Appl. Phys.:31(10), 1763–1766 (1960).

    Article  ADS  Google Scholar 

  • 60SAT: Sato, T., Hukai, S. and Huang, Y. C., “The M5 Points of Binary Titanium Alloys”,J. Austral. Inst. Met.:5(2), 149 (1960).

    Google Scholar 

  • 60SCH: Schroeder, K. and Cheng, C. H., “Correlation of Low-Temperature Caloric and Magnetic Effects in TiFe”,J. Appl. Phys.:31(12), 2154–2155 (1960).

    Article  ADS  Google Scholar 

  • 60STU: Stuewe, H. P. and Shimomura, Y., “Lattice Constants of Cubic Phases FeTi, CoTi, NiTi”,Z. Metallkunde:3, 180–181 (1960).

    Google Scholar 

  • 61WAD: Wada, T., “Thermodynamic Studies on the Alpha-Gamma Transformation of Iron Alloys”,Sci. Rep. RITU:A13, 215–224 (1961).

    MathSciNet  Google Scholar 

  • 62ARR: Arrott, A. and Noakes, J. E., “Thermal, Electrical, and Magnetic Properties of Iron and Its Dilute Alloys”, inIron and Its Dilute Solid Solutions, C. W. Spencer and F. E. Werner, Ed., Interscience, NY, p 81–97 (1962).

    Google Scholar 

  • 62BOR: Boriskina, N. G. and Myasnikova, K. P., “Solubility of Iron, Manganese, and Copper in Alpha-Titanium”,Titanium and Its Alloys, Akad. Nauk SSSR:7, 61 (1962).

    Google Scholar 

  • 62SPE: Speich, G. R., “Precipitation of Laves Phases from Iron-Niobium (Columbium) and Iron-Titanium Solid Solutions”,Trans. Am. Inst. Min. Met. Eng.:224, 850–858 (1962).

    Google Scholar 

  • 63BOR: Borok, B. A., Novikova, E. K., Golubeva, L. S., Rucheva, N. A., Novikova, E. K. and Schegoleva, R. P., “Dilatometric Study of Binary Alloys of Titanium”,Metalloved. Term. Obrab. Met.: (2), 32–36 (1963) in Russian; TR:Met. Sci. Heat Treat.: (2), 94–98 (1963).

    Google Scholar 

  • 63KAN: Kaneko, H. and Huang, Y. C., “Continuous Cooling Transformation Characteristics of Titanium Alloys of Eutectoidal Type (I)”,J. Jpn. Inst. Met.:27, 1393 (1963).

    Google Scholar 

  • 63LUZ: Luzhnikov, L. P., Novikova, V. M. and Mareev, A. P., “Solubility of β-Stabilizers in α-Titanium”,Metalloved. Term. Obrab. Met.: (2), 13–16 (1963) in Russian: TR:Met. Sci. Heat Treat.: (2), 78–81 (1963).

    Google Scholar 

  • 63SVE: Svechnikov, V. N., Pan, V. M. and Spektor, A. Ts., “Intermediate Phases in the Iron-Zirconium System”,Russ. J. Inorg. Chem.:8(9), 1106–1109 (1963).

    Google Scholar 

  • 63WAD: Wada, T., “Austenite Loop in Iron-Titanium System”.Nippon Kinzoku Gaikkaishi:27(3), 119 (1963) in Japanese; TR:Trans. Nat. Res. Inst. Met.: 6(2), 43–46 (1964).

    MathSciNet  Google Scholar 

  • 65BOR: Boriskina, N. G. and Kornilov, I. I., “Systems Ti−Fe and Ti−Cr−Fe”, Soveshchanie Metallurgii Metalloved. Prim. Titana i Ego Splavov 6th Metalloved. Titani, Trudy:6, 61–74 (1965) in Russian.

    Google Scholar 

  • 66ABR: Abrahamson, E. P. and Lopata, S. L., “The Lattice Parameters and Solubility Limits of α Iron as Affected by Some Binary Transition-Element Additions”,Trans. Am. Inst. Min. Met. Eng.:236, 76–87 (1966).

    Google Scholar 

  • 66FIS: Fischer, W. A., Lorenz, K., Fabritius, H., Hoffmann, A. and Kalwa, G., “Investigation of Phase Transformations in Iron Alloys Using a Magnetic Balance”,Arch. Eisenhuettenw.:37, 79 (1966).

    Google Scholar 

  • 66NIS: Nishiyama, Z., Oka, M. and Nakagawa, H., “Transmission Electron Microscope Study of the Martensites in a Titanium-3 w/o Iron Alloy”,Trans. Jpn. Inst. Met.:30, 16–21 (1966).

    Google Scholar 

  • 67BRU: Brueckner, W., Kleinstueck, K. and Schulze, G. E. R., “Atomic Arrangement in the Homogeneity Range of the Laves Phases ZrFe2 and TiFe2”,Phys. Stat. Sol.:23, 475–480 (1967).

    Article  Google Scholar 

  • 67DOR: Doroshenko, A. V., Nemnonov, S. A. and Sidorov, S. K., “Neutron Diffraction Analysis of the Structure of the Alloys TiFe and TiCo”,Fiz. Met. Metalloved.:23(3), 562–563 (1967) in Russian; TR:Phys. Met. Metallogr.: 23(3), 168–169 (1967).

    Google Scholar 

  • 67NAK: Nakagawa, H., Sato, S. and Nishiyama, Z., “Transmission Electron Microscope Study of the Martensites in a Titanium-3 w/o Iron Alloy, Supplement”,Trans. Jpn. Inst. Met.:31, 525–527 (1967).

    Google Scholar 

  • 67RAU: Raub, E., Raub, C. J. and Roeschel, E., “The α-Ti−Fe Solid Solution and its Superconducting Properties”,J. Less-Common Met.:12, 36–40 (1967).

    Article  Google Scholar 

  • 67WER: Wertheim, G. K. and Wernick, J. H., “Moessbauer Effect Study of B. C. C. Structure Alloys, FeAl and FeTi”,Acta Metal.:15, 297 (1967).

    Article  Google Scholar 

  • 68BRU: Brukeckner, W., Perthel, R., Kleinstueck, K. and Schultze, G. E. R., “Magnetic Properties of ZrFe2 and TiFe2 within Their Homogeneity Range”,Phys. Stat. Sol.:29, 211–216 (1968).

    Article  Google Scholar 

  • 68NAK: Nakamichi, T., “Ferro- and Antiferromagnetism of the Laves Phase Compound in Fe−Ti Alloy System”,J. Phys. Soc. Jpn.:25, 1189 (1968).

    Article  ADS  Google Scholar 

  • 68SWA: Swartzendruber, L. J. and Bennett, L. H., “Line Profiles in the Nuclear Magnetic Resonance and Moessbauer Effect of (TiFe)1-x(Co)x Alloys”,J. Appl. Phys.:39(5), 2215–2220 (1968).

    Article  ADS  Google Scholar 

  • 69GUS: Guseva, L. N., Petrova, L. A. and Ogloblina, I. A., “The F. C. C. Martensitic Phase inTi-5.9 w/o Fe”,Dokl. Akad. Nauk SSSR: 185(4), 799 (1969) in Russian; TR:Sov. Phys. Dokl.: 14(4), 367 (1969).

    Google Scholar 

  • 69HIC: Hickman, B. S., “Omega Phase Precipitation in Alloys of Titanium with Transition Metals”,Trans. Am. Inst. Min. Met. Eng.:245, 1329–1336 (1969).

    Google Scholar 

  • 69MOI: Moiseev, V. N., “Properties and Heat Treatment of Ti−Fe and Ti−Fe−Al Alloys”,Metalloved. Term. Obrab. Met.: (5), 2 (1969) in Russian; TR:Met. Sci. Heat Treat.: (5), 335 (1969).

    Google Scholar 

  • 69OSH: Oshio, E., Yoshiga, A. and Adachi, M., “Transmission Electron Microscope Observations of ω Phase in Titanium-5 w/o Iron Alloy”,Trans. Jpn. Inst. Met.:33, 437–442 (1969).

    Google Scholar 

  • 69WER: Wertheim, G. K., Wernick, J. H. and Sherwood, R. C., “Model for the Composition-Dependent Ferromagnetic to Antiferromagnetic Transition in Fe2Ti”,Solid St. Comm.:7, 1399–1402 (1969).

    Article  ADS  Google Scholar 

  • 69WIL: Williams, J. C. and Blackburn, M. J., “The Influence of Misfit on the Morphology and Stability of the Omega Phase in Titanium-Transition Metal Alloys”,Trans. Am. Inst. Min. Met. Eng.:245, 2352 (1969).

    Google Scholar 

  • 70BRU: Brueckner, W., Kleinstueck, K. and Schulze, G. E. R., “Moessbauer Study of the Laves Phase Ti1 x Fe2+x ”,Phys. Stat. Sol. (a):1, K1-K4 (1970).

    Article  Google Scholar 

  • 70FRU: Fruehan, R. J., “Activities in Liquid Fe−Al−O and Fe−Ti−O Alloys”,Metall. Trans.:1, 3403 (1970).

    Article  Google Scholar 

  • 70KAU: Kaufman, L. and Bernstein, H.,Computer Calculation of Phase Diagrams, Academic Press, NY (1970).

    Google Scholar 

  • 700KA: Okazaki, M., “Thermomagnetic Study of Several Fe−Ti Alloys of Compositions near Fe2Ti”,C. R. Acad. Sci. Paris:270B, 254–256 (1970).

    Google Scholar 

  • 70WERa: Wertheim, G. K., Wernick, J. H. and Sherwood, R. C., “Model for the Composition-Dependent Ferromagnetic to Antiferromagnetic Transition in Fe2Ti”,J. Appl. Phys.:41(3), 1325–1325 (1970).

    Article  ADS  Google Scholar 

  • 70WERb: Wertheim, G. K., Buchanan, D. N. E. and Wernick, H., “Magnetic Properties of Inequivalent Iron Atoms in Fe2Ti”,Solid State Comm.:8, 2173–2176 (1970).

    Article  ADS  Google Scholar 

  • 71IKE: Ikeda, K., Nakamichi, T. and Yamamoto, M., “Thermohysteresis Phenomena of the Electrical Resistivity in the Laves Phase Compounds in Fe−Ti System”,J. Phys. Soc. Jpn:30, 1504–1505 (1971).

    Article  ADS  Google Scholar 

  • 71MIY: Miyagi, M. and Shin, S., “Isothermal Transformation Characteristics of Metastable Beta-type Titanium Alloys”,J. Jpn. Inst. Met.:35, 716, (1971).

    Google Scholar 

  • 71ODI: Odinokova, L. P. and Brusilovskiy, B. A., “Decomposition of the β Phase in Titanium-Iron Alloys During Continuous Cooling”,Fiz. Met. Metalloved.:31(3), 713 (1971) in Russian; TR:Phys. Met. Metallogr.: 31(3), 41 (1971).

    Google Scholar 

  • 71PAT: Paton, N. E., de Fontaine, D. and Williams, J. C. “Direct Observation of the Diffusionless β to β+ω Transformation in Titanium Alloys”, Proc. Electron Microsc Soc. Amer., 29th Annual EMSA Meeting: 122–123 (1971).

  • 71SHI: Shinyayev, A. Ya., “Diffusion of Iron in Fe−Ti Alloys”,Izv. Akad. Nauk SSSR Met.: (4), 263–267 (1971) in Russian; TR:Russ. Metall.: (4), 185–188 (1971).

    Google Scholar 

  • 72HAM: Hammond, C., “Orthorhombic Martensites in Titanium Alloys”,Scr Metall.:6, 569 (1973).

    Article  Google Scholar 

  • 72IKEa: Ikeda, K. Nakamichi, T. and Yamamoto, M., “Thermo-Hysteresis Phenomenon of the Electrical Resistivity of Fe2Ti suggesting Its Martensitic Transformation”,Phys. Stat. Sol.:12a, 595 (1972).

    Article  Google Scholar 

  • 72IKEb: Ikeda, K., Nakamichi, T., Noto, K., Muto, Y. and Yamamoto, M., “Influence of Non-Stoichiometry on the Resistance Minimum and Superparamagnetism in the CsCl-Type Compounds (Fe)1 x (Ti)1+x ”,Phys. Stat. Sol.:51b, K39–42 (1972).

    Google Scholar 

  • 72IKEc: Ikeda, K., Nakamichi, T. and Yamamoto, M., “Resistance Minimum in Iron-Titanium Compounds (Fe)1−x (Ti)1+x with the CsCl-Type Structure”,J. Phys. Soc. Jpn.:32, 280 (1972).

    Article  ADS  Google Scholar 

  • 72KHA: Khatanova, N. A., Timushev, A. G. and Zakharova, M. I., “Decomposition of the Solid Solution in the Alloy Ti-10 w/o Fe”,Fiz. Met. Metalloved.: 34(4), 892–894 (1972) in Russian; TR:Phys. Met. Metallogr.: 34(4), 218–220 (1972).

    Google Scholar 

  • 72RAY: Ray, R., Giessen, B. C. and Grant, N. J., “The Constitution of Metastable Titanium-Rich Ti−Fe Alloys: An Order-Disorder Transition”,Metall. Trans.:3, 627–629 (1972).

    Article  Google Scholar 

  • 72SAS: Sass, S. L. and Borie, B., “The Symmetry of the Structure of the ω Phase in Zr and Ti Alloys”,J. Appl. Cryst.:5, 236 (1972).

    Article  Google Scholar 

  • 72ZWE: Zwell, L. and Wriedt, H. A., “Dilation of the (αFe) Lattice by Titanium”,Metall. Trans.:3, 593–594 (1972).

    Article  Google Scholar 

  • 73IKA: Ikawa, H., Shin, S., Miyagi, M. and Morikawa, M., “Some Fundamental Studies on the Phase Transformation from Beta Phase to Alpha Phase in Titanium Alloys”, Sci. Technol. Appl. Titanium Proc. Intl. Conf., R. I. Jaffee, Ed.: p 1545 (1973).

  • 73IKE: Ikeda, K., “Anomalous Thermoelectric Power in the CsCl-Type Compounds (Fe)1−x (Ti)1−x ”,J. Phys. Soc. Jpn.:34, 272 (1973).

    Article  ADS  Google Scholar 

  • 73PAL: Palma, R. J. and Schroeder, K., “High Temperature Specific Heats of Iron-rich Iron-Titanium Alloys Between 600 and 1150 K”,J. Less-Common Met.:31, 249–253 (1973).

    Article  Google Scholar 

  • 73WIL: Williams, J. C., “Kinetics and Phase Transformations”, Sci. Technol. Appl. Titanium Proc. Intl. Conf., R.I. Jaffee, Ed.: p 1483 (1973).

  • 74DON: Donohue, J.,The Structures of the Elements, (J. Wiley and Sons, NY (1974).

    Google Scholar 

  • 74FED: Fedotov, S. G., Kvasova, N. F. and Ermolova, M. I., “Decomposition of the Metastable β Solid Solution of Titanium with Iron”,Dokl. Akad. Nauk SSSR:216(2), 363–366 (1974) in Russian; TR:Dokl. Phys. Chem.: 216, 482–485 (1974).

    Google Scholar 

  • 74GUS: Guseva, L. N. and Dolinskaya, L. K., “Metastable Phases in Titanium Alloys with Group VIII Elements Quenched from the β-Region”,Izv. Akad. Nauk SSSR Met.: (6), 195–202 (1974) in Russian; TR:Russ. Met.: (6), 155–159 (1974).

    Google Scholar 

  • 74IKEa: Ikeda, K., Nakamichi, T. and Yamamoto, M., “Origin of Superparamagnetism in the CsCl-Type Compounds, (Fe)1−x (Ti)1+x , near the Stoichiometric Composition”,J. Phys. Soc. Jpn.:37, 652–659 (1974).

    Article  ADS  Google Scholar 

  • 74IKEb: Ikeda, K., “Kondo Effect in the Transport Properties of the CsCl-Type Compounds Fe1−x Tit+x : I. Their Anomalous Behaviors in the Titanium-Rich Compositions”,Phys. Stat. Sol.:62B, 655–663 (1974).

    Google Scholar 

  • 74IKEc: Ikeda, K., “Kondo Effect in the Transport Properties of the CsCl-Type Compounds Fe1−x Ti1+x : II. Magnetic Scattering Center due to Atomic Disordering”,Phys. Stat. Sol.:63B, 361–370 (1974).

    Google Scholar 

  • 74SPU: Spurling, R. A., Rhodes, C. G. and Williams, J. C., “The Microstructure of Ti Alloys as Influenced by Thin-Foil Artifacts”,Metall. Trans.:5, 2597–2600 (1974).

    Article  Google Scholar 

  • 74STU: Stupel, M. M., Ron, M. and Weiss, B. Z., “A Metastable Phase in α-Ti−Fe Revealed by Moessbauer Analysis”,J. Phys. (Paris) Colloq.:35(6), C483–485 (1974).

    Google Scholar 

  • 74WAG: Wagner, S. and St. Pierre, G. R., “Thermodynamics of the Liquid Binary Iron-Titanium by Mass Spectrometry”,Metall. Trans.:5, 887–889 (1974).

    Article  Google Scholar 

  • 75FED: Fedotov, S. G., Kvasova, N. F. and Sinodova, E. P., “Phase Transformations in Unstable Alloys of Titanium and Iron”,Izv. Akad. Nauk SSSR Met.: (3), 193 (1975) in Russian, TR:Russ. Met.: (3), 162–165 (1975).

    Google Scholar 

  • 75FUR: Furukawa, T. and Kato, E., “Thermodynamics of Binary Liquid Iron-Titanium Alloys by Mass Spectrometry”,Tetsu-to-Hagane:61, 3060 (1975).

    Google Scholar 

  • 75HUT: Huthmann, H. and Inden, G., “High-Temperature Neutron Diffraction on FeTi and CoTi”,Phys. Stat. Sol.:28A, K129 (1975).

    Article  Google Scholar 

  • 75IND: Inden, G., “Determination of Chemical and Magnetic Interchange Energies In BCC Alloys: II. Applications to Non-Magnetic Alloys”,Z. Metallkunde.:66(11), 648 (1975).

    Google Scholar 

  • 76BLA: Blaesius, A. and Gonser, U., “Precision Phase Analysis”,J. Phys. Colloq.:37(12), C6—397—399 (1976).

    Google Scholar 

  • 76STU: Stupel, M. M., Ron, M. and Weiss, B. Z., “Phase Identification in Titanium-rich Ti−Fe System by Moessbauer Spectroscopy”,J. Appl. Phys.: 47(1), 6–12 1976).

    Article  ADS  Google Scholar 

  • 76WIL: Williams, J. C., “Precipitation in Titanium-Base Alloys”, Proc. TMS-AIME Heat Treat. Comm.: p 191 (1976).

  • 77CAH: Cahn, J. W., “The Symmetry of Matals”,Acta Metall.:25, 721–724 (1977).

    Article  Google Scholar 

  • 77KAU: Kaufman, L., “Proceedings of the Fourth Calphad Meeting”,CALPHAD, 1(1), 7–89 (1977).

    Article  Google Scholar 

  • 77MIO: Miodownik, A. P., “The Calculation of Magnetic Contributions to Phase Stability”,CALPHAD:1(2), 133–158 (1977).

    Article  Google Scholar 

  • 77RON: Ron, M., Stupel, M. M. and Weiss, B. Z., “The α→ω Transformation in a Plastically Deformed αTi(Fe) Alloy”,Acta Metall.:25, 1355–1362 (1977).

    Article  Google Scholar 

  • 77STU: Stupel, M. M., Weiss, B. Z. and Ron, M., “Formation of an ω-Phase from αTi(Fe) During Aging”,Acta Metall.:25, 667–671 (1977).

    Article  Google Scholar 

  • 78GUS: Guseva, L. N and Dolinskaya, L. K., “Formation Conditions of Athermal Omega Phase in Alloys of Titanium with Transition Elements”,Krist. Strukt. Svoistva. Met. Splavov: p 59 (1978).

  • 78KAU: Kaufman, L., “Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems—III”,CALPHAD:2(2), 117 (1978).

    Article  Google Scholar 

  • 78STU: Stupel, M. M., Ron, M. and Weiss, B. Z., “Formation of the ω-Phase During the Aging of βTi(7.1 Wt Pct Fe)—A Moessbauer Study”,Metall. Trans.:9A, 249–252 (1978).

    Google Scholar 

  • 79ASM: American Society for Metals,Metals Handbook, Vol. 2. Properties and Selection: Nonferrous Alloys and Pure Metals, Am. Soc. Met., Metals Park, OH (1979).

    Google Scholar 

  • 79KO: Ko, M. and Nishizawa, T., “Effect of Magnetic Transition on the Solubility of Alloying Elements in Alpha Iron”,J. Jpn. Inst. Met.:43(2), 118–126 (1979).

    Google Scholar 

  • 79MAT: Matyka, J., Faudot, F. and Bigot, J., “Study of Iron Solubility in α Titanium”,Scr. Metall.:13, 645–648 (1979).

    Article  Google Scholar 

  • 80DEW: Dew-Hughes, D., “The Addition of Mn and Al to the Hydriding Compound FeTi: Range of Homogeneity and Lattice Parameters”,Met. Trans. A:11A, 1219–1225 (1980).

    Article  Google Scholar 

  • 81MURa: Murray, J. L., “The Nb−Ti (Niobium-Titanium) System”,Bull. Alloy Phase Diagrams:2(1), 55–61 (1981).

    Google Scholar 

  • 81MURb: Murray, J. L., “The Mo−Ti (Molybdenum-Titanium) System”,Bull. Alloy Phase Diagrams, 2(2), 185–192 (1981).

    Google Scholar 

  • 81TAK: Takayama, T., Way, M. Y. and Nishizawa, T., “Effect of Magnetic Transition on the Solubility of Alloying Elements in BCC Iron and Fcc Cobalt”,Trans. Jpn. Inst. Met.:22(5), 315–325 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Thermodynamic calculations have been made using computer programs generously made available by E.-Th. Henig and H. L. Lukas, of the Max-Planck Institute, Stuttgart, Federal Republic of Germany. This work was supported by the Office of Naval Research through the Joint Program on Critical Compilations of Physical and Chemical Data, coordinated through the Office of Standard Reference Data, National Bureau of Standards. Literature searched through 1980. Dr. Murray is the ASM/NBS Data Program's Category Editor for binary titanium alloys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J.L. The Fe−Ti (Iron-Titanium) system. Bulletin of Alloy Phase Diagrams 2, 320–334 (1981). https://doi.org/10.1007/BF02868286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868286

Keywords

Navigation