Advertisement

Bulletin of Alloy Phase Diagrams

, Volume 2, Issue 3, pp 320–334 | Cite as

The Fe−Ti (Iron-Titanium) system

  • Joanne L. Murray
Provisional Fe−Ti

Keywords

Martensite Titanium Alloy Phase Boundary Alloy Phase Diagram Lave Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 09POR: Portevin, M. A., “Contribution to the Study of Special Ternary Steels”,Rev. Metall., Paris:6, 1354–1362 (1909) in French.Google Scholar
  2. 14LAM: Lamort, J., “On Titanium Alloys”,Ferrum:11(8), 225–234 (1914) in German.Google Scholar
  3. 30MIC: Michel, A. and Benazet, P., “Influence of Titanium on the Transformation Points of Steel”,Rev. Metall., Paris:27, 326–333 (1930) in French.Google Scholar
  4. 34GAE: Gaev, I.S., as cited in [Hansen],Metallurg: 19–33 (1934).Google Scholar
  5. 35SVE: Svechnikov, V. N. and Gridnev, V.N., “Effect of Titanium on Polymorphic Transformations in Iron”,Domez: (2), 41–43 (1935) in Russian:Chem. Abstr.: 29, 6547 (1935).Google Scholar
  6. 36JEL: Jellinghaus, W., “The Crystal Structure of Fe3Ti”,Z. Anorg. Allg. Chem.:227, 62 (1936) in German.CrossRefGoogle Scholar
  7. 38TOF: Tofaute, V. W. and Buettinghaus, A., “The Fe-rich Corner of the Fe−Ti−C System”,Arch. Eisenhuettenw.:12, 33–37 (1938) in German.Google Scholar
  8. 38WIT: Witte, H. and Wallbaum, H. J., “Thermal and X-ray Study of the Iron-Titanium System”,Z. Metallkunde:30(3), 100–102 (1938) in German.Google Scholar
  9. 39LAV: Laves, F. and Wallbaum, H. J., “Crystal Chemistry of Titanium Alloys”,Naturwissenschaften:27, 674 (1939) in German.ADSCrossRefGoogle Scholar
  10. 41WAL: Wallbaum, H. J., “The Systems of Titanium, Zirconium, Niobium, and Tantalum with Iron”,Arch. Eisenhuettenw.:14(10), 521–526 (1941) in German.Google Scholar
  11. 48PET: Peter, W. and Fischer, W. A., “Relation Between the Phase Diagrams and Mechanical Properties, Especially Durability, of Fe−Nb and Fe−Ti Alloys”,Arch. Eisenhuettenw.:19, 161–168 (1948) in German.Google Scholar
  12. 50DUW: Duwez, P. and Taylor, J. L., “The Structure of Intermediate Phases in Alloys of Titanium with Iron, Cobalt, and Nickel”,Trans. Am. Inst. Min. Met. Eng.:188, 1173–1176 (1950).Google Scholar
  13. 51FRE: Fretague, W. I., Barker, C. S. and Peretti, E. A., as cited in [Hansen], USAEC Publ. AFTR 6597 Parts I and II (1951–1952).Google Scholar
  14. 51MCQ: McQuillan, A. D., “The Application of Hydrogen Equilibrium-Pressure Measurements to the Investigation of Titanium Alloy Systems”,J. Inst. Met.:79, 73–88 (1951).Google Scholar
  15. 51WOR: Worner, H. W., “The Constitution of Titanium-rich Alloys of Iron and Titanium”,J. Inst. Met.:79, 173–188 (1951).Google Scholar
  16. 52ROE: Roe, W. P. and Fishel, W. P., “Gamma Loop Studies in the Fe−Ti, Fe−Cr, and Fe−Ti−Cr Systems”,Trans. Am. Soc. Met.:44, 1030–1041 (1952).Google Scholar
  17. 52ROS: Rostoker, W., “Observations on the Occurrence of Ti2 X Phases”,Trans. Am. Inst. Min. Met. Eng.:194, 209–210 (1952).Google Scholar
  18. 52VAN: VanThyne, R. J. and Kessler, H. D. and Hansen, M., “The Systems Titanium-Chromium and Titanium-Iron”,Trans. Am. Soc. Met.:44, 974–989 (1952).Google Scholar
  19. 53DUW: Duwez, P., “The Martensite Transformation Temperature in Titanium Binary Alloys”,Trans. Am. Soc. Met.:45, 935 (1953).Google Scholar
  20. 53LEV: Levinger, B. W., “Lattice Parameter of Beta Titanium at Room Temperature”,Trans. Am. Inst. Min. Met. Eng.:197, 195 (1953).Google Scholar
  21. 54NIS: Nishimura, H. and Kamei, K., “Investigation of the System Ti−Fe−Al Alloys, Part I. Studies on Ti−Fe System”,Bull. Eng. Res. Inst. Kyoto U.:6, 38–42 (1954) in Japanese.Google Scholar
  22. 54POL: Polonis, D. H. and Parr, J. G., “Phase Transformations in Titanium-Rich Alloys of Iron and Titanium”,Trans. Am. Inst. Min. Met. Eng.:200, 1148–1154 (1954).Google Scholar
  23. 55KUB: Kubaschewski, O. and Dench, W. A., “The Heats of Formation in the Systems Titanium-Aluminium and Titanium-Iron”,Acta Met.:3, 339–346 (1955).CrossRefGoogle Scholar
  24. 55POL: Polonis, D. H. and Parr, J. G., “Martensite Formation in Powders and Lump Specimens of Ti−Fe Alloys”,Trans. Am. Inst. Min. Met. Eng.:203, 64 (1955).Google Scholar
  25. 55SUT: Sutton, A. L. and Hume-Rothery, W., “The Lattice Spacings of Solid Solutions of Titanium, Vanadium, Chromium, Manganese, Cobalt and Nickel in α-Iron”,Philos. Mag.:46(383), 1295–1309, (1955).Google Scholar
  26. 55VAN: Van Thyne, R. J. and Jaffe, L. D., “Discussion of Phase Transformations in Titanium-Rich Alloys of Iron and Titanium”,Trans. Am. Inst. Min. Met. Eng.:203 (1955). (See also [55POL])Google Scholar
  27. 56ENC: Ence, E. and Margolin, H., “Re-Examination of Ti−Fe and Ti−Fe−O Phase Relations”,Trans. Am. Inst. Min. Met. Eng.:206, 572 (1956).Google Scholar
  28. 56KOR: Kornilov, I. I. and Boriskina, N. G., “Phase Diagram of the System Ti−Fe”,Dokl. Akad. Nauk SSSR:108(6), 1083 (1956) in Russian.Google Scholar
  29. 56YOS: Yoshida, H., “On the Crystal Structure of the Intermediate Phase ω in Titanium-Iron”,J. Jpn. Inst. Met.:20, 292 (1956).Google Scholar
  30. 57HEL: Hellawell, A. and Hume-Rothery, W., “The Constitution of Alloys of Iron and Manganese with Transition Elements of the First Long Period”,Phil. Trans. Roy. Soc., London:249, 426–459 (1957).ADSCrossRefGoogle Scholar
  31. 57PHI: Philip, T. V. and Beck, P. A., “CsCl-Type Ordered Structure in Binary Alloys of Transition Elements”,Trans. Am. Inst. Min. Met. Eng.:209, 1269–1271 (1957).Google Scholar
  32. 58BAG: Bagariatskii, Yu. A., Nosova, G. I. and Tagunova, T. V., “Factors in the Formation of Metastable Phases in Titanium-Base Alloys”,Dokl. Akad. Nauk SSSR:122, 593 (1958) in Russian; TR:Sov. Phys. Dokl.: 3, 1014 (1958).Google Scholar
  33. 58SIL: Silcock, J. M., “An X-Ray Examination of the ω Phase in TiV, TiMo and TiCr Alloys”,Acta Metall.:6, 481 (1958).CrossRefGoogle Scholar
  34. 59ARR: Arrott, A. and Noakes, J. E., “Saturation Magnetization and Curie Points in Dilute Alloys of Iron”,J. Appl. Phys., Suppl.:30(4), 97S-98S (1959).ADSCrossRefGoogle Scholar
  35. 59DWI: Dwight, A. E., “CsCl-Type Equiatomic Phases in Binary Alloys of Transition Elements”,Trans. Am. Inst. Min. Met. Eng.:215, 283–286 (1959).Google Scholar
  36. 59MOL: Moll, S. H. and Ogilivie, R. E., “Solubility and Diffusion of Titanium in Iron”,Trans. Am. Inst. Min. Met. Eng.:215, 613 (1959).Google Scholar
  37. 59MUR: Murakami, Y., Kimura, H., and Nishimura, Y., “An Investigation on the Titanium-Iron-Carbon System”,Trans. Nat. Res. Inst. Met. Jpn.:1(1), 7–21 (1959).Google Scholar
  38. 60GRI: Gridnev, Y. N., Petrov, Yu. N., Rafalovskiy, V. A. and Trefilov, V. I., “Investigation of ω Phase Formation in Titanium Alloys”,Vopr. Fiz. Met. Metalloved. AN UkrSSR Sb. Nauchn. Rabot: (11), 82–86 (1960).Google Scholar
  39. 60NEV: Nevitt, M. V., “Magnetization of the Compound TiFe”,J. Appl. Phys.:31(1), 155–157 (1960).ADSCrossRefGoogle Scholar
  40. 60PIE: Pietrokowsky, P. and Youngkin, F. G., “Ordering in the Intermediate Phases TiFe, TiCo, and TiNi”,J. Appl. Phys.:31(10), 1763–1766 (1960).ADSCrossRefGoogle Scholar
  41. 60SAT: Sato, T., Hukai, S. and Huang, Y. C., “The M5 Points of Binary Titanium Alloys”,J. Austral. Inst. Met.:5(2), 149 (1960).Google Scholar
  42. 60SCH: Schroeder, K. and Cheng, C. H., “Correlation of Low-Temperature Caloric and Magnetic Effects in TiFe”,J. Appl. Phys.:31(12), 2154–2155 (1960).ADSCrossRefGoogle Scholar
  43. 60STU: Stuewe, H. P. and Shimomura, Y., “Lattice Constants of Cubic Phases FeTi, CoTi, NiTi”,Z. Metallkunde:3, 180–181 (1960).Google Scholar
  44. 61WAD: Wada, T., “Thermodynamic Studies on the Alpha-Gamma Transformation of Iron Alloys”,Sci. Rep. RITU:A13, 215–224 (1961).MathSciNetGoogle Scholar
  45. 62ARR: Arrott, A. and Noakes, J. E., “Thermal, Electrical, and Magnetic Properties of Iron and Its Dilute Alloys”, inIron and Its Dilute Solid Solutions, C. W. Spencer and F. E. Werner, Ed., Interscience, NY, p 81–97 (1962).Google Scholar
  46. 62BOR: Boriskina, N. G. and Myasnikova, K. P., “Solubility of Iron, Manganese, and Copper in Alpha-Titanium”,Titanium and Its Alloys, Akad. Nauk SSSR:7, 61 (1962).Google Scholar
  47. 62SPE: Speich, G. R., “Precipitation of Laves Phases from Iron-Niobium (Columbium) and Iron-Titanium Solid Solutions”,Trans. Am. Inst. Min. Met. Eng.:224, 850–858 (1962).Google Scholar
  48. 63BOR: Borok, B. A., Novikova, E. K., Golubeva, L. S., Rucheva, N. A., Novikova, E. K. and Schegoleva, R. P., “Dilatometric Study of Binary Alloys of Titanium”,Metalloved. Term. Obrab. Met.: (2), 32–36 (1963) in Russian; TR:Met. Sci. Heat Treat.: (2), 94–98 (1963).Google Scholar
  49. 63KAN: Kaneko, H. and Huang, Y. C., “Continuous Cooling Transformation Characteristics of Titanium Alloys of Eutectoidal Type (I)”,J. Jpn. Inst. Met.:27, 1393 (1963).Google Scholar
  50. 63LUZ: Luzhnikov, L. P., Novikova, V. M. and Mareev, A. P., “Solubility of β-Stabilizers in α-Titanium”,Metalloved. Term. Obrab. Met.: (2), 13–16 (1963) in Russian: TR:Met. Sci. Heat Treat.: (2), 78–81 (1963).Google Scholar
  51. 63SVE: Svechnikov, V. N., Pan, V. M. and Spektor, A. Ts., “Intermediate Phases in the Iron-Zirconium System”,Russ. J. Inorg. Chem.:8(9), 1106–1109 (1963).Google Scholar
  52. 63WAD: Wada, T., “Austenite Loop in Iron-Titanium System”.Nippon Kinzoku Gaikkaishi:27(3), 119 (1963) in Japanese; TR:Trans. Nat. Res. Inst. Met.: 6(2), 43–46 (1964).MathSciNetGoogle Scholar
  53. 65BOR: Boriskina, N. G. and Kornilov, I. I., “Systems Ti−Fe and Ti−Cr−Fe”, Soveshchanie Metallurgii Metalloved. Prim. Titana i Ego Splavov 6th Metalloved. Titani, Trudy:6, 61–74 (1965) in Russian.Google Scholar
  54. 66ABR: Abrahamson, E. P. and Lopata, S. L., “The Lattice Parameters and Solubility Limits of α Iron as Affected by Some Binary Transition-Element Additions”,Trans. Am. Inst. Min. Met. Eng.:236, 76–87 (1966).Google Scholar
  55. 66FIS: Fischer, W. A., Lorenz, K., Fabritius, H., Hoffmann, A. and Kalwa, G., “Investigation of Phase Transformations in Iron Alloys Using a Magnetic Balance”,Arch. Eisenhuettenw.:37, 79 (1966).Google Scholar
  56. 66NIS: Nishiyama, Z., Oka, M. and Nakagawa, H., “Transmission Electron Microscope Study of the Martensites in a Titanium-3 w/o Iron Alloy”,Trans. Jpn. Inst. Met.:30, 16–21 (1966).Google Scholar
  57. 67BRU: Brueckner, W., Kleinstueck, K. and Schulze, G. E. R., “Atomic Arrangement in the Homogeneity Range of the Laves Phases ZrFe2 and TiFe2”,Phys. Stat. Sol.:23, 475–480 (1967).CrossRefGoogle Scholar
  58. 67DOR: Doroshenko, A. V., Nemnonov, S. A. and Sidorov, S. K., “Neutron Diffraction Analysis of the Structure of the Alloys TiFe and TiCo”,Fiz. Met. Metalloved.:23(3), 562–563 (1967) in Russian; TR:Phys. Met. Metallogr.: 23(3), 168–169 (1967).Google Scholar
  59. 67NAK: Nakagawa, H., Sato, S. and Nishiyama, Z., “Transmission Electron Microscope Study of the Martensites in a Titanium-3 w/o Iron Alloy, Supplement”,Trans. Jpn. Inst. Met.:31, 525–527 (1967).Google Scholar
  60. 67RAU: Raub, E., Raub, C. J. and Roeschel, E., “The α-Ti−Fe Solid Solution and its Superconducting Properties”,J. Less-Common Met.:12, 36–40 (1967).CrossRefGoogle Scholar
  61. 67WER: Wertheim, G. K. and Wernick, J. H., “Moessbauer Effect Study of B. C. C. Structure Alloys, FeAl and FeTi”,Acta Metal.:15, 297 (1967).CrossRefGoogle Scholar
  62. 68BRU: Brukeckner, W., Perthel, R., Kleinstueck, K. and Schultze, G. E. R., “Magnetic Properties of ZrFe2 and TiFe2 within Their Homogeneity Range”,Phys. Stat. Sol.:29, 211–216 (1968).CrossRefGoogle Scholar
  63. 68NAK: Nakamichi, T., “Ferro- and Antiferromagnetism of the Laves Phase Compound in Fe−Ti Alloy System”,J. Phys. Soc. Jpn.:25, 1189 (1968).ADSCrossRefGoogle Scholar
  64. 68SWA: Swartzendruber, L. J. and Bennett, L. H., “Line Profiles in the Nuclear Magnetic Resonance and Moessbauer Effect of (TiFe)1-x(Co)x Alloys”,J. Appl. Phys.:39(5), 2215–2220 (1968).ADSCrossRefGoogle Scholar
  65. 69GUS: Guseva, L. N., Petrova, L. A. and Ogloblina, I. A., “The F. C. C. Martensitic Phase inTi-5.9 w/o Fe”,Dokl. Akad. Nauk SSSR: 185(4), 799 (1969) in Russian; TR:Sov. Phys. Dokl.: 14(4), 367 (1969).Google Scholar
  66. 69HIC: Hickman, B. S., “Omega Phase Precipitation in Alloys of Titanium with Transition Metals”,Trans. Am. Inst. Min. Met. Eng.:245, 1329–1336 (1969).Google Scholar
  67. 69MOI: Moiseev, V. N., “Properties and Heat Treatment of Ti−Fe and Ti−Fe−Al Alloys”,Metalloved. Term. Obrab. Met.: (5), 2 (1969) in Russian; TR:Met. Sci. Heat Treat.: (5), 335 (1969).Google Scholar
  68. 69OSH: Oshio, E., Yoshiga, A. and Adachi, M., “Transmission Electron Microscope Observations of ω Phase in Titanium-5 w/o Iron Alloy”,Trans. Jpn. Inst. Met.:33, 437–442 (1969).Google Scholar
  69. 69WER: Wertheim, G. K., Wernick, J. H. and Sherwood, R. C., “Model for the Composition-Dependent Ferromagnetic to Antiferromagnetic Transition in Fe2Ti”,Solid St. Comm.:7, 1399–1402 (1969).ADSCrossRefGoogle Scholar
  70. 69WIL: Williams, J. C. and Blackburn, M. J., “The Influence of Misfit on the Morphology and Stability of the Omega Phase in Titanium-Transition Metal Alloys”,Trans. Am. Inst. Min. Met. Eng.:245, 2352 (1969).Google Scholar
  71. 70BRU: Brueckner, W., Kleinstueck, K. and Schulze, G. E. R., “Moessbauer Study of the Laves Phase Ti1 xFe2+x”,Phys. Stat. Sol. (a):1, K1-K4 (1970).CrossRefGoogle Scholar
  72. 70FRU: Fruehan, R. J., “Activities in Liquid Fe−Al−O and Fe−Ti−O Alloys”,Metall. Trans.:1, 3403 (1970).CrossRefGoogle Scholar
  73. 70KAU: Kaufman, L. and Bernstein, H.,Computer Calculation of Phase Diagrams, Academic Press, NY (1970).Google Scholar
  74. 700KA: Okazaki, M., “Thermomagnetic Study of Several Fe−Ti Alloys of Compositions near Fe2Ti”,C. R. Acad. Sci. Paris:270B, 254–256 (1970).Google Scholar
  75. 70WERa: Wertheim, G. K., Wernick, J. H. and Sherwood, R. C., “Model for the Composition-Dependent Ferromagnetic to Antiferromagnetic Transition in Fe2Ti”,J. Appl. Phys.:41(3), 1325–1325 (1970).ADSCrossRefGoogle Scholar
  76. 70WERb: Wertheim, G. K., Buchanan, D. N. E. and Wernick, H., “Magnetic Properties of Inequivalent Iron Atoms in Fe2Ti”,Solid State Comm.:8, 2173–2176 (1970).ADSCrossRefGoogle Scholar
  77. 71IKE: Ikeda, K., Nakamichi, T. and Yamamoto, M., “Thermohysteresis Phenomena of the Electrical Resistivity in the Laves Phase Compounds in Fe−Ti System”,J. Phys. Soc. Jpn:30, 1504–1505 (1971).ADSCrossRefGoogle Scholar
  78. 71MIY: Miyagi, M. and Shin, S., “Isothermal Transformation Characteristics of Metastable Beta-type Titanium Alloys”,J. Jpn. Inst. Met.:35, 716, (1971).Google Scholar
  79. 71ODI: Odinokova, L. P. and Brusilovskiy, B. A., “Decomposition of the β Phase in Titanium-Iron Alloys During Continuous Cooling”,Fiz. Met. Metalloved.:31(3), 713 (1971) in Russian; TR:Phys. Met. Metallogr.: 31(3), 41 (1971).Google Scholar
  80. 71PAT: Paton, N. E., de Fontaine, D. and Williams, J. C. “Direct Observation of the Diffusionless β to β+ω Transformation in Titanium Alloys”, Proc. Electron Microsc Soc. Amer., 29th Annual EMSA Meeting: 122–123 (1971).Google Scholar
  81. 71SHI: Shinyayev, A. Ya., “Diffusion of Iron in Fe−Ti Alloys”,Izv. Akad. Nauk SSSR Met.: (4), 263–267 (1971) in Russian; TR:Russ. Metall.: (4), 185–188 (1971).Google Scholar
  82. 72HAM: Hammond, C., “Orthorhombic Martensites in Titanium Alloys”,Scr Metall.:6, 569 (1973).CrossRefGoogle Scholar
  83. 72IKEa: Ikeda, K. Nakamichi, T. and Yamamoto, M., “Thermo-Hysteresis Phenomenon of the Electrical Resistivity of Fe2Ti suggesting Its Martensitic Transformation”,Phys. Stat. Sol.:12a, 595 (1972).CrossRefGoogle Scholar
  84. 72IKEb: Ikeda, K., Nakamichi, T., Noto, K., Muto, Y. and Yamamoto, M., “Influence of Non-Stoichiometry on the Resistance Minimum and Superparamagnetism in the CsCl-Type Compounds (Fe)1 x(Ti)1+x”,Phys. Stat. Sol.:51b, K39–42 (1972).Google Scholar
  85. 72IKEc: Ikeda, K., Nakamichi, T. and Yamamoto, M., “Resistance Minimum in Iron-Titanium Compounds (Fe)1−x(Ti)1+x with the CsCl-Type Structure”,J. Phys. Soc. Jpn.:32, 280 (1972).ADSCrossRefGoogle Scholar
  86. 72KHA: Khatanova, N. A., Timushev, A. G. and Zakharova, M. I., “Decomposition of the Solid Solution in the Alloy Ti-10 w/o Fe”,Fiz. Met. Metalloved.: 34(4), 892–894 (1972) in Russian; TR:Phys. Met. Metallogr.: 34(4), 218–220 (1972).Google Scholar
  87. 72RAY: Ray, R., Giessen, B. C. and Grant, N. J., “The Constitution of Metastable Titanium-Rich Ti−Fe Alloys: An Order-Disorder Transition”,Metall. Trans.:3, 627–629 (1972).CrossRefGoogle Scholar
  88. 72SAS: Sass, S. L. and Borie, B., “The Symmetry of the Structure of the ω Phase in Zr and Ti Alloys”,J. Appl. Cryst.:5, 236 (1972).CrossRefGoogle Scholar
  89. 72ZWE: Zwell, L. and Wriedt, H. A., “Dilation of the (αFe) Lattice by Titanium”,Metall. Trans.:3, 593–594 (1972).CrossRefGoogle Scholar
  90. 73IKA: Ikawa, H., Shin, S., Miyagi, M. and Morikawa, M., “Some Fundamental Studies on the Phase Transformation from Beta Phase to Alpha Phase in Titanium Alloys”, Sci. Technol. Appl. Titanium Proc. Intl. Conf., R. I. Jaffee, Ed.: p 1545 (1973).Google Scholar
  91. 73IKE: Ikeda, K., “Anomalous Thermoelectric Power in the CsCl-Type Compounds (Fe)1−x (Ti)1−x”,J. Phys. Soc. Jpn.:34, 272 (1973).ADSCrossRefGoogle Scholar
  92. 73PAL: Palma, R. J. and Schroeder, K., “High Temperature Specific Heats of Iron-rich Iron-Titanium Alloys Between 600 and 1150 K”,J. Less-Common Met.:31, 249–253 (1973).CrossRefGoogle Scholar
  93. 73WIL: Williams, J. C., “Kinetics and Phase Transformations”, Sci. Technol. Appl. Titanium Proc. Intl. Conf., R.I. Jaffee, Ed.: p 1483 (1973).Google Scholar
  94. 74DON: Donohue, J.,The Structures of the Elements, (J. Wiley and Sons, NY (1974).Google Scholar
  95. 74FED: Fedotov, S. G., Kvasova, N. F. and Ermolova, M. I., “Decomposition of the Metastable β Solid Solution of Titanium with Iron”,Dokl. Akad. Nauk SSSR:216(2), 363–366 (1974) in Russian; TR:Dokl. Phys. Chem.: 216, 482–485 (1974).Google Scholar
  96. 74GUS: Guseva, L. N. and Dolinskaya, L. K., “Metastable Phases in Titanium Alloys with Group VIII Elements Quenched from the β-Region”,Izv. Akad. Nauk SSSR Met.: (6), 195–202 (1974) in Russian; TR:Russ. Met.: (6), 155–159 (1974).Google Scholar
  97. 74IKEa: Ikeda, K., Nakamichi, T. and Yamamoto, M., “Origin of Superparamagnetism in the CsCl-Type Compounds, (Fe)1−x (Ti)1+x, near the Stoichiometric Composition”,J. Phys. Soc. Jpn.:37, 652–659 (1974).ADSCrossRefGoogle Scholar
  98. 74IKEb: Ikeda, K., “Kondo Effect in the Transport Properties of the CsCl-Type Compounds Fe1−xTit+x: I. Their Anomalous Behaviors in the Titanium-Rich Compositions”,Phys. Stat. Sol.:62B, 655–663 (1974).Google Scholar
  99. 74IKEc: Ikeda, K., “Kondo Effect in the Transport Properties of the CsCl-Type Compounds Fe1−xTi1+x: II. Magnetic Scattering Center due to Atomic Disordering”,Phys. Stat. Sol.:63B, 361–370 (1974).Google Scholar
  100. 74SPU: Spurling, R. A., Rhodes, C. G. and Williams, J. C., “The Microstructure of Ti Alloys as Influenced by Thin-Foil Artifacts”,Metall. Trans.:5, 2597–2600 (1974).CrossRefGoogle Scholar
  101. 74STU: Stupel, M. M., Ron, M. and Weiss, B. Z., “A Metastable Phase in α-Ti−Fe Revealed by Moessbauer Analysis”,J. Phys. (Paris) Colloq.:35(6), C483–485 (1974).Google Scholar
  102. 74WAG: Wagner, S. and St. Pierre, G. R., “Thermodynamics of the Liquid Binary Iron-Titanium by Mass Spectrometry”,Metall. Trans.:5, 887–889 (1974).CrossRefGoogle Scholar
  103. 75FED: Fedotov, S. G., Kvasova, N. F. and Sinodova, E. P., “Phase Transformations in Unstable Alloys of Titanium and Iron”,Izv. Akad. Nauk SSSR Met.: (3), 193 (1975) in Russian, TR:Russ. Met.: (3), 162–165 (1975).Google Scholar
  104. 75FUR: Furukawa, T. and Kato, E., “Thermodynamics of Binary Liquid Iron-Titanium Alloys by Mass Spectrometry”,Tetsu-to-Hagane:61, 3060 (1975).Google Scholar
  105. 75HUT: Huthmann, H. and Inden, G., “High-Temperature Neutron Diffraction on FeTi and CoTi”,Phys. Stat. Sol.:28A, K129 (1975).CrossRefGoogle Scholar
  106. 75IND: Inden, G., “Determination of Chemical and Magnetic Interchange Energies In BCC Alloys: II. Applications to Non-Magnetic Alloys”,Z. Metallkunde.:66(11), 648 (1975).Google Scholar
  107. 76BLA: Blaesius, A. and Gonser, U., “Precision Phase Analysis”,J. Phys. Colloq.:37(12), C6—397—399 (1976).Google Scholar
  108. 76STU: Stupel, M. M., Ron, M. and Weiss, B. Z., “Phase Identification in Titanium-rich Ti−Fe System by Moessbauer Spectroscopy”,J. Appl. Phys.: 47(1), 6–12 1976).ADSCrossRefGoogle Scholar
  109. 76WIL: Williams, J. C., “Precipitation in Titanium-Base Alloys”, Proc. TMS-AIME Heat Treat. Comm.: p 191 (1976).Google Scholar
  110. 77CAH: Cahn, J. W., “The Symmetry of Matals”,Acta Metall.:25, 721–724 (1977).CrossRefGoogle Scholar
  111. 77KAU: Kaufman, L., “Proceedings of the Fourth Calphad Meeting”,CALPHAD, 1(1), 7–89 (1977).CrossRefGoogle Scholar
  112. 77MIO: Miodownik, A. P., “The Calculation of Magnetic Contributions to Phase Stability”,CALPHAD:1(2), 133–158 (1977).CrossRefGoogle Scholar
  113. 77RON: Ron, M., Stupel, M. M. and Weiss, B. Z., “The α→ω Transformation in a Plastically Deformed αTi(Fe) Alloy”,Acta Metall.:25, 1355–1362 (1977).CrossRefGoogle Scholar
  114. 77STU: Stupel, M. M., Weiss, B. Z. and Ron, M., “Formation of an ω-Phase from αTi(Fe) During Aging”,Acta Metall.:25, 667–671 (1977).CrossRefGoogle Scholar
  115. 78GUS: Guseva, L. N and Dolinskaya, L. K., “Formation Conditions of Athermal Omega Phase in Alloys of Titanium with Transition Elements”,Krist. Strukt. Svoistva. Met. Splavov: p 59 (1978).Google Scholar
  116. 78KAU: Kaufman, L., “Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems—III”,CALPHAD:2(2), 117 (1978).CrossRefGoogle Scholar
  117. 78STU: Stupel, M. M., Ron, M. and Weiss, B. Z., “Formation of the ω-Phase During the Aging of βTi(7.1 Wt Pct Fe)—A Moessbauer Study”,Metall. Trans.:9A, 249–252 (1978).Google Scholar
  118. 79ASM: American Society for Metals,Metals Handbook, Vol. 2. Properties and Selection: Nonferrous Alloys and Pure Metals, Am. Soc. Met., Metals Park, OH (1979).Google Scholar
  119. 79KO: Ko, M. and Nishizawa, T., “Effect of Magnetic Transition on the Solubility of Alloying Elements in Alpha Iron”,J. Jpn. Inst. Met.:43(2), 118–126 (1979).Google Scholar
  120. 79MAT: Matyka, J., Faudot, F. and Bigot, J., “Study of Iron Solubility in α Titanium”,Scr. Metall.:13, 645–648 (1979).CrossRefGoogle Scholar
  121. 80DEW: Dew-Hughes, D., “The Addition of Mn and Al to the Hydriding Compound FeTi: Range of Homogeneity and Lattice Parameters”,Met. Trans. A:11A, 1219–1225 (1980).CrossRefGoogle Scholar
  122. 81MURa: Murray, J. L., “The Nb−Ti (Niobium-Titanium) System”,Bull. Alloy Phase Diagrams:2(1), 55–61 (1981).Google Scholar
  123. 81MURb: Murray, J. L., “The Mo−Ti (Molybdenum-Titanium) System”,Bull. Alloy Phase Diagrams, 2(2), 185–192 (1981).Google Scholar
  124. 81TAK: Takayama, T., Way, M. Y. and Nishizawa, T., “Effect of Magnetic Transition on the Solubility of Alloying Elements in BCC Iron and Fcc Cobalt”,Trans. Jpn. Inst. Met.:22(5), 315–325 (1981).Google Scholar

Copyright information

© ASM International 1981

Authors and Affiliations

  • Joanne L. Murray
    • 1
  1. 1.Center for Materials ResearchNational Bureau of StandardsUSA

Personalised recommendations