Advertisement

Folia Microbiologica

, Volume 6, Issue 2, pp 127–135 | Cite as

Study of the growth and development of chlorella populations in the culture as a whole

VI. Basophilia and oxido-reduction relationships in chlorella cells
  • R. Řetovský
  • Irena Klášterská
Article

Summary

The course of Gram staining, reduction of TTC and telluric acid, oxidation of the leuco-form of neutral red and basophilia of Chlorella cells were studied by means of basic stains in populations of the culture as a whole. The discussion on the results does not conflict with present basic views on identification of the organelles belonging to the chondriome by the given methods. The chondriome of young Chlorella cells in the vegetative phase forms a basically coherent zone at the cell periphery. In transition to the reproductive phase this peripheral zne disappears and filamentous mitochondria are formed. The long mitochondria become a component of the autospores. In the mature autospore the chondriome again spreads over the periphery of the cell. In the course of cytomorphogenesis the chondriome thus undergoes individual ontogenesis. The mitochondria of Chlorella cells are not formedde novo. The results of the experiments, their interpretation and reproducibility seem to indicate further possibilities for the study of the physiology of the reproduction ofChlorellae, not only with reference to elementary metabolic processes, but to the activity of the individual as an integral unit.

Keywords

Nile Blue Plant Mitochondrion Chlorella Cell Polynuclear Cell Janus Green 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Изучение роста и развития популяции Chlorella в культуре как целом

VI. Базофильность и окислительно-восстановительные условия у Chlorella

Abstract

Исследовались течение окраски по Граму, восстановление трифенилтет разолиумхлорида и теллуровой кислоты, окисление лейкоформы нейтрального красного и базофильность Chlorella при помощи основных красителей в культурах как целом. Обсуждение результатов не противоречит принципиальным современным воззрениям отностельно идентификации органелл, принадлежащих к хондриому, с помощью применявшихся нами методов. Хондриом молодых Chlorella в вегетативной фазе образует, по существу, сплошную зону на поверхности клетки. При переходе в фазу размножения эта периферическая зона исчезает, а образуются нитевидные митохондрии. Длинные хондриоконты становятся составной частью аутоспор. В зрелой аутоспоре хондриом опять располагается на поверхности клетки. Таким образом, хондриом Chlorella проходит в цитоморфогензе собственным онтогенезом. Митохондрии Chlorella не образуются de novo. Результаты обытов, их толкование и воспроизводимость внушают представление, что здесь открываются новые возможности изучения физиологии размножения Chlorella, которые касаются уже не только элементарных процессов метаболизма, но и деятельности особи как неделимого целого.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertsson, P. A., Leyon, H.:The structure of chloroplasts v. Chlorella pyrenoidosa Pringsheim studied by means of electron microscopy. Exp. Cell Res. 7: 288, 1954.PubMedCrossRefGoogle Scholar
  2. Bartels, P., Schwantes, H. O.:Quantitative mikrospektrographische Messungen zur Aufnahme von Thionin durch lebende Zellen von Allium Cepa. Z. Naturf. 10b: 712, 1955.Google Scholar
  3. Bartholomew, J. W., Mittwer, T.:The mechanism of the gram reaction. I. The specifity of the primary dye. Stain Technol. 25: 103, 1950.Google Scholar
  4. Bartholomew, J. W., Umbreit, W. W.:Ribonucleic acid and the Gram stain. J. Bact. 48: 567, 1944.PubMedGoogle Scholar
  5. Hackett, D. P.:Recent studies on plant mitochondria. Int. Rev. Cytology 4: 143, 1955.Google Scholar
  6. Hase, E., Mihara, S., Otsuka, H.:An additional note on the nature of sulfur-containing peptide-nucleotide complex obtained from Chlorella and yeasts. J. gen. appl. Microbiol. 5: 43, 1959a.CrossRefGoogle Scholar
  7. Hase, E., Mihara, S., Otsuka, H., Tamiya, H.:New peptide-nucleotide compounds obtained from Chlorella and yeasts. Biochim. biophys. Acta 32: 298, 1959b.PubMedCrossRefGoogle Scholar
  8. Hase, E., Mihara, S., Otsuka, H., Tamiya, H.:Sulfur-containing peptide-nucleotide complex isolated from Chlorella and yeast cells. Arch. Biochem. Biophys. 83: 170, 1959c.PubMedCrossRefGoogle Scholar
  9. Hase, E., Mihara, S., Tamiya, H.:Role of sulfur in the cell division of Chlorella, with special reference to the sulfur compounds appearing during the process of cell division. I. Plant & Cell Physiol. 1: 131, 1960.Google Scholar
  10. Heinrich, G.:Fibel der histologischen Technik. Gustav Fischer, Jena 1957.Google Scholar
  11. Henry, H., Stacy, M.:Histochemistry of the Gram-staining reaction for microorganisms. Nature 151: 671, 1943.CrossRefGoogle Scholar
  12. Henry, H., Stacy, M.:Histochemistry of the Gram-staining reaction for micro-organisms. Proc. Royal Soc. London B 133: 391, 1946.CrossRefGoogle Scholar
  13. Honda, S. I., Robertson, R. N.:Studies in the metabolism of plant cells. XI. The Donnan equilibration and the ionic relations of plant mitochondria. Aust. J. Biol. Sci.: 9: 305, 1956.Google Scholar
  14. Iwamura, T., Hase, E., Morimura, Y., Tamiya, H.:Life cycle of the green alga Chlorella with special reference to the protein and nucleic acids contents of cells in successive formative stages. Ann. Acad. Sci. Fenn. A, II (A. I. Virtanen Homage Volume) 60: 89, 1955.Google Scholar
  15. Iwamura, T., Myers, J.:Changes in the content and distribution of the nucleic acid bases in Chlorella during the life cycle. Arch. Biochem. Biophys. 84: 267, 1959.PubMedCrossRefGoogle Scholar
  16. Key, J. L., Hanson, J. B., Bils, R. F.:Effect of 2,4-dichlorophenoxyacetic acid application on activity and composition of mitochondria from soybeans. Plant Physiol. 35: 177, 1960.PubMedGoogle Scholar
  17. Kurnick, N. B.:Histochemistry of nucleic acids. Int. Rev. Cytology 4: 221, 1955.Google Scholar
  18. Lansing, A. I., Rosenthal, Th. B.:The relation between ribonucleic acid and ionic transport across the cell surface. J. Cell. comp. Physiol. 40: 337, 1952.CrossRefGoogle Scholar
  19. Lindberg, O., Ernster, L.:Chemistry and physiology of mitochondria and microsomes. Protoplasmatologia. III, A 4. Springer Verlag, Vienna 1954.Google Scholar
  20. Lorenzen, H., Ruppel, H. G.:Versuche zur Gliederung des Entwicklungsverlaufs der Chlorella-Zelle. Planta 54: 394, 1960.CrossRefGoogle Scholar
  21. Mejsel, M. P.:Functional morphology of yeast organisms. Acad. Sci. USSR, Moscow 1950 (in Russian).Google Scholar
  22. Mittwer, T., Bartoholomew, J. W., Kallman, B. J.:The mechanism of the Gram reaction. II. The function of iodine in the Gram Stain. Stain Technol. 25: 169, 1950.PubMedGoogle Scholar
  23. Müller, R.:Fädige Mitochondrien bei Hefen. Naturwisenschaften 44: 622, 1957.CrossRefGoogle Scholar
  24. Newcomer, E. H.:Mitochondria in plants. Bot. Rev. 6: 85, 1940.Google Scholar
  25. Newcomer, E. H.:Mitochondria in plants. II. Bot. Rev. 17: 53, 1951.CrossRefGoogle Scholar
  26. Nickell, L. G.:Growth effects of antibiotics on plant cells and their reaction to a modified Gram stain. Fyton 11: 93, 1958.Google Scholar
  27. Nickerson, W. J. edit.:Biochemistry of morphogenesis. Proc. Fourth Intern. Congr. Biochemistry, Vienna 1958, Symposium VI, Pergamon Press, London 1959.Google Scholar
  28. Pádr, Zd.:Tetrazoliové soli. Stát. zdrav. nakl., Praha 1959.Google Scholar
  29. Passow, H., Rothstein, A., Loewenstein, B.:An allor-none response in the release of potassium by yeast cells treated with methylene blue and other basic redox dyes. J. gen. Physiol. 43: 97, 1959.PubMedCrossRefGoogle Scholar
  30. Peklo, J.:Studies o inaktivaci fotosynthetické assimilace a tvorby chlorofyllu. Část IV. Rozpr. Čes. Akad., II. tř., roč. 24, čís. 10, 1915.Google Scholar
  31. Robertson, R. N.:Mechanism of absorption and transport of inorganic nutrients in plants. Ann. Rev. Plant Physiol. 2: 1, 1951.CrossRefGoogle Scholar
  32. Robertson, R. N., Wilkins, M. J., Hope, A. B.:Plant mitochondria and salt accumulation. Nature 175: 640, 1955a.CrossRefGoogle Scholar
  33. Robertson, R. N., Wilkins, M. J., Hope, A. B., Nestel, L.:Studies in the metabolism of plant cells. X. Respiratory activity and ionic relations of plant mitochondria. Aust. J. Biol. Sci. 8: 164, 1955b.Google Scholar
  34. Rothstein, A.:The enzymology of the cell surface. Protoplasmatologia II E4, Springer-Verlag, Wien 1954.Google Scholar
  35. Řetovský, R.:Stimulace klíčení semen uranylnitrátem. Rozpr. II. tř. Čes. akad., roč. 49, čís. 12, 1939.Stimulation de la germination des grains par le nitrate d'uranyle. Bull. intern. Acad. Sci. de Bohême, Praha 1939.Google Scholar
  36. Řetovský, R., Klášterská, I.:Study of the growth and development of Chlorella populations in the culture as a whole. I. Differentiation media with mineral agar. Fol. microbiol. 4: 336, 1959.Google Scholar
  37. Řetovský, R., Klášterská, I.:Study of the growth and development of Chlorella populations in the culture as a whole. II. The tonicity of the culture medium and its influence on the cytomorphogenesis of Chlorella cells. Fol. microbiol. 5: 73, 1960a.Google Scholar
  38. Řetovský, R., Klášterská, I.:Study of the growth and development of Chlorella populations in the culture as a whole. III. The cholate effect in Chlorella cells. Fol. microbiol. 5: 80, 1960b.Google Scholar
  39. Řetovský, R., Klášterská, I.:Study of the growth and development of Chlorella populations in the culture as a whole. IV. The polynuclear character of Chlorella cells. Fol. microbiol. 5: 145, 1960c.Google Scholar
  40. Řetovský, R., Klášterská, I.:Study of the growth and development of Chlorella populations in the culture as a whole. V. The influence of magnesiumsulphate on the formation of autospores in Chlorella cells. Fol. microbiol. 6: 115, 1961.Google Scholar
  41. Schift, J. A.:Studies on sulfate utilization by Chlorella pyrenoidosa using sulfate—S 35; the occurrence of S-adenosyl methionine. Plant Physiol. 34: 73, 1959.Google Scholar
  42. Shankar, K., Bard, R. C.:Effect of metallic ions on the growth, morphology, and metabolism of Clostridium perfringens. J. Bact. 69: 436, 1955.PubMedGoogle Scholar
  43. Shrift, A.:Nitrogen and sulfur changes associated with growth uncoupled from cell division in Chlorella vulgaris. Plant Physiol. 34: 505, 1959.PubMedGoogle Scholar
  44. Sorokin, H. P.:Mitochondria and precipitates of A-type vacuoles in plant cells. J. Arnold Arboretum 36: 293, 1955.Google Scholar
  45. Sorokin, H. P., Sorokin, S.:Staining of mitochondria with neotetrazolium chloride. Amer. J. Bot. 43: 183, 1956.CrossRefGoogle Scholar
  46. Steward, F. C., Millar, F. K.:Salt accumulation in plants: a reconsideration of the role of growth and metabolism. A. Salt accumulation as a cellular phenomenon. B. Salt accumulation in the plant body. Symposia Soc. Exp. Biol. 8: 367, 1954.Google Scholar
  47. Shubladze, A. K., Gaidamovich, S. J.:Short course of practical virology. Medgiz, Moscow 1949 (in Russian).Google Scholar
  48. Stocking, C. R.:Hydration and cell physiology. Encyclopedia of Plant Physiology, vol. 2, p. 22. Springer-Verlag, Berlin 1956.Google Scholar
  49. Wedding, R. T., Black, M. K.:Uptake and metabolism of sulfate by Chlorella. I. Sulfate accumulation and active sulfate. Plant Physiol. 35: 72, 1960.PubMedGoogle Scholar

Copyright information

© Nakladatelství Československé akademie věd 1961

Authors and Affiliations

  • R. Řetovský
    • 1
  • Irena Klášterská
    • 1
  1. 1.Department of Microbiology, Institute of Biology, CzechoslovakAcademy of SciencesPrague 6

Personalised recommendations