Runs test for a circular distribution and a table of probabilities

  • Chooichiro Asano


A method is suggested for testing whether two samples observed on a circle are drawn from the same distribution. The proposed test is a modification of the well-known Wald-Wolfowitz runs test for a distribution on a straight line. The primary advantage of the proposed test is that it minimizes the number of assumptions on the theoretical distribution.


Rotatable Symmetry Theoretical Distribution Circular Permutation Circular Distribution Numerical Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. E. Barton and F. N. David, “Runs in a ring,”Biometrika, 45 (1958), 572–578.CrossRefMATHGoogle Scholar
  2. [2]
    D. E. Barton and F. N. David,Combinatorial Chance, Hafner Publishing Co. 1962.Google Scholar
  3. [3]
    J. R. Curray, “The analysis of two-dimensional orientation data,”Jour. Geology, 64 (1956), 117–131.CrossRefGoogle Scholar
  4. [4]
    D. Durand and J. A. Greenwood, “Random unit vectors. II. Usefulness of Gram-Charlier and related series in approximating distributions,”Ann. Math. Statist., 28 (1957), 978–986.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    D. Durand and J. A. Greenwood, “Modifications of the Rayleigh test for uniformity in analysis of two-dimensional orientation data,”Jour. Geology, 66 (1958), 229–238.CrossRefGoogle Scholar
  6. [6]
    J. A. Greenwood and D. Durand, “The distribution of the length and components of the sum ofn random unit vectors,”Ann. Math. Statist., 26 (1955), 233–246.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. J. Gumbel, J. A. Greenwood, and D. Durand, “The circular normal distribution: Theory and tables,”Jour. Ann. Statist. Assoc., 48 (1953), 131–152.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    N. H. Kuiper, “Tests concerning random points on a circle,”Indag. Math., 22, No. 1, (1960), 38–47.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    N. H. Kuiper, “Random variables and random vectors,”Bull. Inst. Agronomique et Station de Recher. de Gembtonx, 1 (1960), 344–355.Google Scholar
  10. [10]
    M. P. A. MacMahon,Combinatory Analysis, Vols. 1 & 2, Cambridge University Press, 1916.Google Scholar
  11. [11]
    A. M. Mood, “The distribution theory of ‘Runs’,”Ann. Math. Statist., 11 (1940), 367–392.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Riordan,An Introduction to Combinatorial Analysis, John Wiley & Sons, 1958.Google Scholar
  13. [13]
    K. Schmidt-Koenig, “Internal clocks and homings,”Cold Spring Harbor Symposium on Quantitative Biology, 25 (1960), 389–393.CrossRefGoogle Scholar
  14. [14]
    M. A. Stephens, “Exact and approximate tests for directions (I),”Biometrika 49 (1962), 463–477.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    W. L. Stevens, “Distribution of groups in a sequence of alternatives,”Ann. Eugenics, 9 (1939), 10–17.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    F. S. Swed and C. Eisenhart, “Tables for testing randomness of grouping in a sequence of alternatives,”Ann. Math. Statist., 14 (1943), 66–87.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    A. Wald and J. Wolfowitz, “On a test whether two samples are from the same population,”Ann. Math. Statist., 11 (1940), 147–162.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. Wolfowitz, “On the theory of runs with some applications to quality control,”Ann. Math. Statist., 14 (1943), 280–288.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    G. S. Watson and E. J. Williams, “On the construction of significance tests on the circle and the sphere,”Biometrika, 43 (1956), 344–352.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    G. S. Watson, “Goodness-of-fit on a circle,”Biometrika, 48 (1961), 109–114.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    G. S. Watson, “Goodness-of-fit tests on a circle (II),”Biometrika, 49 (1962), 57–63.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Statistical Mathematics 1965

Authors and Affiliations

  • Chooichiro Asano

There are no affiliations available

Personalised recommendations