Advertisement

Indian Journal of Clinical Biochemistry

, Volume 14, Issue 2, pp 207–212 | Cite as

A study of spectrin and lipid peroxidation of red blood cell membrane in thalassaemia carrier

  • De Manisha
  • D. Banerjee
  • G. Talukdar
  • D. K. Bhattacharya
Inherited Diseases
  • 46 Downloads

Abstract

The aim of the present work is to understand the lipid peroxidation of RBC membrane and the spectrin protein content of RBC membrane cytoskeleton of thalassaemic carrier state (trait) of β and hemoglobin E variant (HbE). We have measured the hemoglobin (Hb), malondialdehyde (MDA) and spectrin content of RBC membrane of thalassaemic carrier. The spectrin content (α and β band) of both β and HbE carrier was not changed than normal individuals. However, lipid peroxidation of RBC membrane was significantly increased in both β and HbE trait, and Hb level was also decreased in thalassaemic carrier. It may be assumed that oxidative damage by excess lipid peroxidation may have no role on irreversible membrane damage in β thalassaemia and HbE thalassaemia carrier.

Key words

Spectrin malondialdehyde HbE carrier β carrier Lipid Peroxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Old, J.M. (1986) Fetal DNA analysis, In: Human genetic disease: a practical approach. Eds. Davies, K.E. IRL Press, Oxford. p 1–17.Google Scholar
  2. 2.
    Thein, S.L. (1993) β thalassaemia. In: Bailliere's Clinical Haematology. Eds. Higgs, D.R. and Weatherall. vol 6(1). D. Bailliere Tindal, London. p 151–175.Google Scholar
  3. 3.
    Shinar, E., Shalev, O., Rachimilewitz, E.A. and Schrier, S.L. (1987) Erythrocyte membrane skeleton abnormalities in severe β thalassaemia. Blood. 70, 158–164.PubMedGoogle Scholar
  4. 4.
    Brittenham, G.M. (1988) Globin gene variants and polymorphisms in India. In: Haemoglobin variants in human populations. Eds. Winter, D.J. vol II. C.R.C. press, Inc, Boca Ratan, Florida. p 79–109.Google Scholar
  5. 5.
    Saha, N. and Banerjee, B. (1973) Hemoglobinopathies in the Indian subcontinent—a review of literature. Acta. Ganet. Med. Gamelol. 22, 117–118.Google Scholar
  6. 6.
    De, M., Das, S.K., Bhattacharya, D.K. and Talukdar, G. (1997) The occurrence of β-thalassaemia mutations and its interaction with hemoglobin E in the Eastern India. International. J. Hematol. 66, 31–34.CrossRefGoogle Scholar
  7. 7.
    Lahiri, P., Bhattacharya, S., Chandra, S. and Bhattacharya, D.K. (1990) Red cell membrane lipid peroxidation in transfusion-dependent β and Eβ thalassaemia. Biochem. Med. Metabolic. Biol. 43, 101–104.CrossRefGoogle Scholar
  8. 8.
    Jain, S.K. and Hochstein, P. (1980) Polymerization of membrane components in aging red blood cell. Biochem. Biophys. Res. Commun. 92, 247–254.PubMedCrossRefGoogle Scholar
  9. 9.
    Haest, C.W.M. (1982) Interaction between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane Biochim. Biophys. Acta. 694, 331–352.PubMedGoogle Scholar
  10. 10.
    Carrel, R.W., Winterbourn, C.C. and Rachmilewitz, E.A. (1975) Annotation. Activated oxygen and heamolysis. Brit. J. Haematol. 30, 259–264.CrossRefGoogle Scholar
  11. 11.
    Rachmilewitz, E.A., Lubin, B.H. and Shohet, S.B. (1976) Lipid membrane peroxidation in thalassaemia major. Blood. 47, 494–505.Google Scholar
  12. 12.
    Advani, R., Sorenson, E., Shinar, W., Lande, E., Rachmilewitz, E.A. and Schrier, S.L. (1992) Characterization and comparison of the red blood cell membrane damage in severe human α and β thalassaemia. Blood. 79, 1058–1063.PubMedGoogle Scholar
  13. 13.
    Aljurf, M., Ma, L., Angelucci, E., Lucarelli, G., Snyder, L.M., Keifer, C.R., Yuan, J. and Schrier, S.L. (1996) Abnormal assembly of membrane proteins in erythroid progenitors of patients with β thalassaemia major. Blood. 87, 2049–2056.PubMedGoogle Scholar
  14. 14.
    Rouyer-Fessard, P., Garel, M.C., Domenget, C., Guetami, D., Bachir, D., Colona, P. and Benzard, Y. (1989) A study of membrane protein defects and α hemoglobin chains of red blood cell in human β thalassaemia. J. Biol. Chem. 261, 19092–19098.Google Scholar
  15. 15.
    Kahane, I., Shifter, A. and Rachmilewitz, E.A. (1978) Cross-linking of red blood cell membrane proteins induced by oxidative stress in β thalassaemia. FEBS. Lett. 85, 267–270.PubMedCrossRefGoogle Scholar
  16. 16.
    Advani, R., Rubin, E., Mohandas, W. and Schrier, S. (1992) Oxidative red cell membrane injury in the pathophysiology of severe mouse β thalassaemia. Blood. 79, 1064–1067.PubMedGoogle Scholar
  17. 17.
    Dodge, J.T., Mitchelle, C. and Hanaham, D. (1963) The preparation of chemical characteristics of hemoglobin free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100, 119–130.PubMedCrossRefGoogle Scholar
  18. 18.
    Laemmli, U.K. (1978) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.CrossRefGoogle Scholar
  19. 19.
    Buege, J.A. and Aust, S.D. (1978) Microsomal lipid peroxidation. In: Methods in Enzymology. Eds. Colowick, S.P. and Kaplan, N.O. Academic Press. New York, USA. vol 52. p 302–310.Google Scholar
  20. 20.
    Bradford, M.M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  21. 21.
    Arduini, A., Stern, A., Storto, S., Belfiglio, M., Mancinelli, G., Scurty, R. and Federic, S. (1989) Effect of oxidative stress on membrane phospholipid and protein organization in human erythrocytes. Arch. Biochem. Biophys. 273, 112–120.PubMedCrossRefGoogle Scholar
  22. 22.
    Pasternack, G.R., Anderson, R.A., Leto, T.L. and Marchesi, V.T. (1985) Interactions between protein 4.1 and band 3: an alternative binding site for an element of the membrane skeleton. J. Biol. Chem. 260, 3676–3683.PubMedGoogle Scholar
  23. 23.
    Gudi, S.R.P., Kumar, A., Bhakuni, V., Gokhale, S.M. and Gupta, C.M. (1990) Membrane skeleton-bilayer interactions is not the major determinant of membrane phospholipid asymmetry in human erythrocytes. Biochem. Biophys. Acta. 1023, 63–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Hebbel, R.P. (1990) The sickle erythrocyte in double jeopardy: autoxidation and iron decompartmentalization. Semin. in. Hematol. 27, 51–69.Google Scholar
  25. 25.
    Hebbel, R.P. (1985) Anto-oxidation and a membrane associated “Fenton Reagent”: a possible explanation for development of membrane design in sickle erythrocytes. Clinics. in. Haematol. 14, 129–140.Google Scholar
  26. 26.
    Chattopadhyay, A., Das Choudhury, T., Basu, M.K. and Dutta, A.G. (1992) Effect of Cu++ ascorbic acid on lipid peroxidation, Mg++ ATPase activity and spectrin of RBC membrane and reversal by erythropoitin. Mol. Cell, Biochem. 118, 23–30.CrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 1999

Authors and Affiliations

  • De Manisha
    • 1
  • D. Banerjee
    • 1
  • G. Talukdar
    • 1
  • D. K. Bhattacharya
    • 1
  1. 1.Thalassaemia Counselling Department, Vivekananda Institute of Medical ScienceRamakrishna Mission Seva PratisthanCalcuttaIndia

Personalised recommendations