Advertisement

Bulletin of Alloy Phase Diagrams

, Volume 7, Issue 5, pp 421–436 | Cite as

The carbon-rare earth systems

  • K. A. Gschneidner
  • F. W. Calderwood
Carbon-Rare Earth Systems

Keywords

Carbide Transformation Temperature Alloy Phase Diagram Gibbs Energy Function National Technical Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 55Kri: O.H. Krikorian, “High-Temperature,” University of California Radiation Laboratory Rep. UCLR-2888, National Technical Information Service, Springfield, VA (1955).Google Scholar
  2. 58Chu: W.A. Chupka, J. Berkowitz, C.F. Giese, and M.G. Inghram, “Thermodynamic Studies of Some Gaseous Metallic Carbides”,J. Phys. Chem., 62, 611 (1958).CrossRefGoogle Scholar
  3. 58Spe: F.H. Spedding, K.A. Gschneidner, Jr., and A.H. Daane, “The Crystal Structures of Some of the Rare Earth Carbides”,J. Am. Chem. Soc., 80, 4499 (1958).CrossRefGoogle Scholar
  4. 59Spe: F.H. Spedding, K.A. Gschneidner, Jr., and A.H. Daane, “The Lanthanum-Carbon System”,Trans. AIME, 215, 192 (1959).Google Scholar
  5. 62Jac: D.D. Jackson, G.W. Barton, Jr., O.H. Krikorian, and R.S. Newbury, “Vaporization of Gadolinium and Thorium Dicarbides”,Thermodynamics of Nuclear Materials, IAEA, Vienna, 529 (1962).Google Scholar
  6. 63Jac: D.D. Jackson, R.G. Bedford and G.W. Barton, Jr., “Vaporization of Rare Earth Dicarbides”, University of California, Lawrence Radiation Laboratory UCRL-7362-T, Livermore, CA (1963).Google Scholar
  7. 64Chu: W. Chubb and D.L. Keller, “Yttrium-Carbon System”,Carbides in Nuclear Energy, Vol. 1, L.E. Russell, Ed., Macmillan and Co., Ltd., London, 208 (1964).Google Scholar
  8. 64Kos: T.Ya. Kosolapova and G.N. Makarenko, “On the Preparation and Properties of the Dicarbide of Yttrium, Lanthanum, Cerium, and Praseodymium”,Ukr. Khim. Zh., 30, 784 (1964).Google Scholar
  9. 64Ste: P. Stecher, A. Neckel, F. Benesovsky, and H. Nowotny, “Investigation of the Ternary System Cerium-Thorium (Uranium, Zirconium, Molybdenum)-Carbon”,Planseeber. Pulvermetall., 12, 181 (1964).Google Scholar
  10. 65Bal: G. Balducci, A. Capalbi, G. deMaria, and M. Guido, “Tetracarbide Molecules in the Vapor Phase over Rare-Earth-Graphite Systems”,J. Chem. Phys., 43, 2136 (1965).CrossRefADSGoogle Scholar
  11. 65Dem: G. deMaria, M. Guido, L. Malaspina, and B. Pesce, “Mass-Spectrometric Study of the Yttrium-Carbon System.”,J. Chem. Phys., 43, 4449 (1965).CrossRefADSGoogle Scholar
  12. 65Mak: G.N. Makarenko, L.T. Pustovoit, V.L. Yupko, and B.M. Rud’, “The Nature of the Chemical Bond in Dicarbides of the Rare-Earth Metals”,Ivz. Akad. Nauk SSSR, Neorg. Mater., 1, 1787 (1965) in Russian; TR:Inorg. Mater., 1, 1616 (1965).Google Scholar
  13. 65Ver: G. Verhaegen, S. Smoes, and J. Drowart, “Mass Spectrometric Study of the System Carbon-Scandium—The Stability of the Gaseous Molecule ScC2”, AD 464 599, Apr 65, National Technical Information Service, Springfield, VA (1965).Google Scholar
  14. 65Wak: G.F. Wakefield, A.H. Daane, and F.H. Spedding, “Decomposition Pressure of Holmium Carbides”,Rare Earth Research Conference III, L. Eyring, Ed., Gordon and Breach, New York, 469–483 (1965).Google Scholar
  15. 66Geb1: R.E. Gebelt and H.A. Eick, “The Preparation and Thermodynamics of Europium Dicarbide”,Thermodynamics, Proc. Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids, 22–27 Jul 65, Vol. 1, IAEA, Vienna, 291 (1966).Google Scholar
  16. 66Geb2: R.E. Gebelt and H.A. Eick, “Vaporization Behavior of Europium Dicarbide”,J. Chem. Phys., 44, 2872 (1966).CrossRefADSGoogle Scholar
  17. 66Pad: Yu.B. Paderno, V.L. Yupko, B.M. Rud’, and G.N. Makarenko, “Physical Properties of Dicarbides of Certain Rare Earth Metals”,Izv. Akad. Nauk SSSR, Neorg. Mater., 2, 626 (1966). in Russian; TR:Inorg Mater., 2, 540 (1966).Google Scholar
  18. 67Ave: D.F. Avery, J. Cuthbert, and C. Silk, “High-Temperature Vaporization Studies by Mass Spectrometry. II. The Samarium-Carbon System”,Br. J. Appl. Phys., 18, 1133 (1967).Google Scholar
  19. 67Bal: G. Balducci, A. Capalli, G. deMaria, and M. Guido, “Mass Spectrometric Study of Rare Earth-Carbon Systems”, AFMLTR-67-335, Technical Information Service, Springfield, VA 22151 (Oct 1967).Google Scholar
  20. 67Bow: A.L. Bowman, N.H. Krikorian, G.P. Arnold, T.C. Wallace, and N.G. Nereson, “High-Temperature Neutron Diffraction Study of LaC2 and YC2”, LA-DC-8451 CESTI, 7 (1967).Google Scholar
  21. 67Cut: J. Cuthbert, R.L. Faircloth, R.H. Flowers, and F.C.W. Pummery, “Vaporization of Alkaline-Earth and Rare-Earth Dicarbides”,Proc. Br. Ceram. Soc., 8, 155 (1967).Google Scholar
  22. 67Dem: G. deMaria, G. Balducci, A. Capalbi, and M. Guido, “High-Temperature Mass Spectrometric Study of the System Neodymium-Carbon”,Proc. Br. Ceram. Soc., 8, 127 (1967).Google Scholar
  23. 67Ger: B.C. Gerstein, F.J. Jelenek, J.R. Mullaly, W.D. Schickell, and F.H. Spedding, “Heat Capacity of Europium from 5–300 K”,J. Chem. Phys., 47, 5194 (1967).CrossRefADSGoogle Scholar
  24. 67Hoe: C.L. Hoenig, H.D. Stout, and P.C. Nordine, “Knudsen Cell Studies of the Vaporization of Gadolinium and Gadolinium Dicarbide”,J. Am. Ceram. Soc., 50, 385 (1967).CrossRefGoogle Scholar
  25. 67Kri: N.H. Krikorian, T.C. Wallace, and M.G. Bowman, “Phase Relationships of the High-Carbon Portion of Lanthanide-Carbon Systems”,Propriétiés Thermodynamiques Physiques et Structurales des Dérivés Semi-Metalliques, Orsay, 28 Sep–1 Oct 65, Centre National Recherche Scientifique, Paris, 489 (1967).Google Scholar
  26. 67Win: P. Winchell and N.L. Baldwin, “Mass Spectrometric-Knudsen Cell Study of CeC2 Sublimation and Thermal and X-Ray Analyses of CeC2”,J. Phys. Chem., 71, 4476 (1967).CrossRefGoogle Scholar
  27. 68Ato: M. Atoji and M. Kikuchi, “Crystal Structures of Cubic and Trigonal Yttrium Hypocarbides; a Dimorphically Interphased Single-Crystal Study”, ANL-7441, Chemistry Div., Argonne National Laboratory, Argonne, IL (1968).Google Scholar
  28. 68Bal: G. Balducci, A. Capalbi, G. deMaria, and M. Guido, “Atomization Energy of the NdC4 Molecule”,J. Chem. Phys., 48, 5275 (1968).CrossRefADSGoogle Scholar
  29. 68Car: O.N. Carlson, and W.M. Paulson, “The Yttrium-Carbon System”,Trans. AIME, 242, 846 (1968).Google Scholar
  30. 68Fai: R.L. Faircloth, R.H. Flowers, and F.C.W. Pummery, “Vaporization of Some Rare-Earth Dicarbides”,J. Inorg. Nucl. Phys., 30, 499 (1968).CrossRefGoogle Scholar
  31. 68Has: J.M. Haschke and H.A. Eick, “The Vaporization of Ytterbium Dicarbide”,J. Phys. Chem., 72, 1697 (1968).CrossRefGoogle Scholar
  32. 68Kru: M.C. Krupka, N.H. Krikorian, and T.C. Wallace, “Polymorphism in Heavy Rare Earth Dicarbides at High Pressures and Temperatures”,Proc. 7th Rare Earth Research Conference, Oct 28–30, Coronado, CA, 197 (1968).Google Scholar
  33. 69And: J.S. Anderson, N.J. Clark, and I.J. McColm, “On the Existence of Cerium Monocarbide: Cerium Nitride Carbides”,J. Inorg. Nucl. Chem., 31, 1621 (1969).CrossRefGoogle Scholar
  34. 69Bal1: G. Balducci, G. deMaria, and M. Guido, “Thermodynamics of Rare Earth-Carbon Systems”,Proc. 1st Int. Conf. Calorimetry and Thermodynamics, 31 Aug–4 Sep, Warsaw, 415 (1969).Google Scholar
  35. 69Bal2: G. Balducci, A. Capalbi, G. deMaria, and M. Guido, “Thermodynamics of Rare-Earth-Carbon Systems. I. The Cerium-Carbon System”,J. Chem. Phys., 50, 1969 (1969).CrossRefADSGoogle Scholar
  36. 69Bal3: G. Balducci, A. Capalbi, G. deMaria, and M. Guido, “Thermodynamics of Rare-Earth-Carbon Systems. II. The Holmium-Carbon and Dysprosium-Carbon Systems”,J. Chem. Phys., 51, 2871 (1969).CrossRefADSGoogle Scholar
  37. 69Bal4: G. Balducci, G. deMaria, and M. Guido, “Thermodynamics of Rare-Earth-Carbon Systems. III. The Erbium-Carbon System”,J. Chem. Phys., 51, 2876 (1969).CrossRefADSGoogle Scholar
  38. 69Gin: K.A. Gingerich, “Mass-Spectrometric Evidence for the Molecules UC and CeC and Predicted Stability of Diatomic Carbides of Electropositive Transition Metals”,J. Chem. Phys., 50, 2255 (1969).CrossRefADSGoogle Scholar
  39. 69Gre: R.W. Green, E.O. Thorland, J. Croat, and S. Legvold, “Superconductivity in Some Compounds of La, Lu, Sc, and Y”,J. Appl. Phys., 40, 3161 (1969).CrossRefADSGoogle Scholar
  40. 69Kri: N.H. Krikorian, A.L. Giorgi, E.G. Szklarz, M.C. Krupka, and B.T. Matthias, “Preparation and Superconductivity of Germanium-Stabilized Sc13C10,”J. Less-Common Met., 19, 253 (1969).CrossRefGoogle Scholar
  41. 69Kru: M.C. Krupka, A.L. Giorgi, N.H. Krikorian, and E.G. Szklarz, “High-Pressure Synthesis and Superconducting Properties of Yttrium Sesquicarbide,”J. Less-Common Met., 17, 91 (1969).CrossRefGoogle Scholar
  42. 69Kys: G.M. Kyshtobaeva, E.I. Smagina, and V.S. Kutsev, “Equilibrium in the Reduction of Samarium Oxide (Sm2O3) with Carbon,”Zh. Fiz. Khim., 43, 2400 (1969) in Russian; TR:Russ. J. Phys. Chem., 43, 1350 (1969).Google Scholar
  43. 69Pad1: Yu.B. Paderno, V.L. Yupko, and G.N. Makarenko, “Some Physical Properties of the Sesquicarbides of Yttrium, Lanthanum, Cerium, and Neodymium,”Izv. Akad. Nauk SSSR, Neorg. Mater., 5, 386 (1969) in Russian; TR:Inorg. Mater., 5, 323 (1969).Google Scholar
  44. 69Pad2: Yu.B. Paderno, V.L. Yupko, and G.N. Makarenko, “Characteristics of the High-Temperature Phase Transformation in Dicarbides of the Rare-Earth Metals (REM),”Izv. Akad. Nauk SSSR, Neorg. Mater., 5, 889 (1969) in Russian; TR:Inorg. Mater., 5, 757 (1969).Google Scholar
  45. 69Sto: N.D. Stout, C.L. Hoenig, and P.C. Nordine, “Knudsen Cell Studies of the Vaporization of Samarium Dicarbide,”J. Am. Ceram. Soc., 52, 145 (1969).CrossRefGoogle Scholar
  46. 70And: J.S. Anderson and A.N. Bagshaw, “Thermodynamic Data for Some Rare Earth Carbides by Solid-State E.M.F. Techniques,”Les Eléments Des Terres Rares, Vol. 1, Centre National de la Recherche Scientifique, Paris, 397 (1970).Google Scholar
  47. 70Has: J.M. Haschke and H.A. Eick, “A Phase Investigation of the Ytterbium-Carbon System,”J. Am. Chem. Soc., 92, 1526 (1970).CrossRefGoogle Scholar
  48. 70Koh: F.J. Kohl and C.A. Stearns, “Vaporization Thermodynamics of Yttrium Dicarbide-Carbon Systems and Dissociation Energy of Yttrium Dicarbide and Tetracarbide,”J. Chem. Phys., 52, 6310 (1970).CrossRefADSGoogle Scholar
  49. 70Kru: M.C. Krupka and N.H. Krikorian, “High-Pressure Synthesis of New Heavy Rare Earth Carbides,”Proc. 8th Rare Earth Research Conference, Reno, Vol. 2, T.A. Henrie and R.E. Lindstrom, Ed., National Technical Information Service, Springfield, VA, 382 (1970).Google Scholar
  50. 70Kys: G.M. Kyshtobaeva, E.I. Smagina, and V.S. Kutsev, “Mass-Spectrometric Study of the Thermal Dissociation of Samarium and Europium Carbides,”Zh. Fiz. Khim., 44, 1405 (1970) in Russian; TR:Russ. J. Phys. Chem., 44, 788 (1970).Google Scholar
  51. 70Lap: A. Laplace and R. Lorenzelli, “Study of the Crystal Structure of Europium and Ytterbium Monocarbide and the Valence of the Metal,”Les Eléments des Terres Rares, Vol. 1, Centre National de la Recherche Scientifique, Paris, 385 (1970).Google Scholar
  52. 70Sei: R.L. Seiver and H.A. Eick, “Vapor-Pressure Measurements in the SmC2−C and TmC2−C Systems,”Proc. 8th Rare Earth Research Conference, Reno, Vol. 1., T.A. Henrie and R.E. Lindstrom, Ed., National Technical Information Service, Springfield, VA, 436 (1970).Google Scholar
  53. 70Yup: V.L. Yupko, G.N. Makarenko, and Yu.B. Paderno, “Physical Properties of Carbides of Rare-Earth Metals,”Tugoplavkie Karbidy, G.V. Samsonov, Ed., Naukova Dumka, Kiev (1970) in Russian; TR:Refractory Carbides, N.B. Vaughn, Translator, Consultants Bureau, New York, 251 (1974).Google Scholar
  54. 71Bak: F.B. Baker, E.J. Huber, Jr., C.E. Holley, Jr., and N.H. Krikorian, “Enthalpies of Formation of Cerium Dioxide, Cerium Sesquicarbide, and Cerium Dicarbide,”J. Chem. Thermodyn., 3, 77 (1971).CrossRefGoogle Scholar
  55. 71Bau: J. Bauer and H. Nowotny, “The Yttrium-Boron-Carbon Ternary System,”Monatsh. Chem., 102, 1129 (1971).CrossRefGoogle Scholar
  56. 71Fil1: E.E. Filby, “Mass Spectrometric Investigation of C2-Exchange Reactions of Rare Earth Metals with Their Dicarbides,” Ph.D. dissertation, University Microfilms (1971); cited by E.E. Filby and L.L. Ames.Inorg. Nucl. Chem. Lett., 8, 855 (1972).Google Scholar
  57. 71Fil2: E.E. Filby and L.L. Ames, “Mass-Spectrometric Investigation of C2-Exchange Reactions of Lanthanum, Cerium, Praseodymium, and Neodymium with their Dicarbides,”High Temp. Sci., 3, 41 (1971).Google Scholar
  58. 71Fil3: E.E. Filby and L.L. Ames, “Dissociation Energies of Gaseous Gadolinium Dicarbide and Terbium Dicarbide,”J. Phys. Chem., 75, 848 (1971).CrossRefGoogle Scholar
  59. 71Jed: H. Jedlicka, H. Nowotny, and F. Benesovsky, “On the Scandium-Carbon System. Part 2: Crystal Structure of C-rich Carbides,”Monatsh. Chem., 102, 389 (1971).CrossRefGoogle Scholar
  60. 71Koh1: F.J. Kohl and C.A. Stearns, “Mass Spectrometric Knudsen Cell Studies of Vaporization of Lanthanum and Scandium Carbides and Dissociation Energy of LaC2, LaC3, LaC4, ScC2, and ScC4” NASA-TN-D-7039, 1970, National Aeronautic and Space Administration, Washington, DC (1971).Google Scholar
  61. 71Koh2: F.J. Kohl and C.A. Stearns, “Mass Spectrometric Determination of the Dissociation Energy of ScC2 and ScC4,”J. Chem. Phys., 54, 1414 (1971).CrossRefADSGoogle Scholar
  62. 71Kos: T.Ya. Kosolapova, G.N. Makarenko, and L.T. Domasevich, “Characteristics of Chemical Bonding in Rare-Earth Carbides,”Zh. Prikl. Khim., 44, 953 (1971) in Russian; TR:Russ. J. Appl. Chem., 44, 965 (1971).Google Scholar
  63. 71Sei: R.L. Seiver and H.A. Eick, “Vapor-Pressure Measurements in the Samarium Dicarbide-Carbon and Thulium Dicarbide-Carbon Systems,”High Temp. Sci., 3, 292 (1971).Google Scholar
  64. 71Ste: C.A. Stearns and F.J. Kohl, “Vaporization Thermodynamics of the Lanthanum Carbon System. Mass Spectrometric Determination of the Dissociation Energy of LaC2, LaC3, and LaC4,”J. Chem. Phys., 54, 5180 (1971).CrossRefADSGoogle Scholar
  65. 71Sto: E.K. Storms, “The Vaporization Behavior of the Defect Carbides. Part II: The Y-C System,”High Temp. Sci., 3, 99 (1971).Google Scholar
  66. 72And: J.S. Anderson and A.N. Bagshaw, “Thermodynamics Studies on Some Rare-Earth Dicarbides,”Rev. Chim. Miner., 9, 115 (1972).Google Scholar
  67. 72Bal: G. Balducci, G. deMaria, and M. Guido, “Mass Spectrometric Determination of the Dissociation Energy of EuC2(g),”J. Chem. Phys., 56, 1431 (1972).CrossRefADSGoogle Scholar
  68. 72Fil: E.E. Filby and L.L. Ames, “Dissociation Energies of the Gaseous Dicarbides of the Rare Earths,”High Temp. Sci., 4, 160 (1972).Google Scholar
  69. 72Gui: M. Guido, G. Balducci, and G. deMaria, “Thermodynamics of Rare-Earth-Carbon Systems. IV. The Lutetium-Carbon System,”J. Chem. Phys., 57, 1475 (1972).CrossRefADSGoogle Scholar
  70. 73Ant: H.L. Antonova and V.S. Kutsev, “Mass-Spectrometric Investigation of the Thermal Dissociation of Neodymium Dicarbide,”Zh. Fiz. Khim., 47, 2446 (1973) in Russian; TR:Russ. J. Phys. Chem., 47, 1385 (1973).Google Scholar
  71. 73Hub: E.J. Huber, C.E. Holley, Jr., and N.H. Krikorian, “The Enthalpies of Formation of Some Gadolinium Carbides,” LA-UR-73-694, Los Alamos Scientific Laboratory, Los Alamos, NM (Sep 1973).Google Scholar
  72. 73Mcc: I.J. McColm, T.A. Quigley, and N.J. Clark, “The Cubic-Tetragonal Transformation in Metal Dicarbides—II. Lanthanide Dicarbides and Some Mixed Lanthanide Dicarbide Solid Solutions,”J. Inorg. Nucl. Chem., 35, 1931 (1973).CrossRefGoogle Scholar
  73. 74Ada: G.-Y. Adachi, K. Ueno, and K. Shiokawa, “Heats of Transformation in Lanthanide Dicarbides and Mixed Lanthanide Dicarbide Solid Solutions,”J. Less-Common Met., 37, 313 (1974).CrossRefGoogle Scholar
  74. 74Bau: J. Bauer, “Contribution to a Study of the Crystal Structure of the Er15C19 Phase,”J. Less-Common Met., 37, 161 (1974).CrossRefADSGoogle Scholar
  75. 75Gue: D. Guérard and A. Hérold, “Insertion of the Lanthanides into Graphite,”C. R. Acad. Sci., Ser. C281, 929 (1975).Google Scholar
  76. 76Ada: G.-Y. Adachi, Y. Shibata, K. Ueno, and J. Shiokawa, “Heats of the Tetragonal-Cubic Transformation in Rare Earth Dicarbides and Mixed Rare Earth Dicarbide Solid Solutions,”J. Inorg. Nucl. Chem., 38, 1023 (1976).CrossRefGoogle Scholar
  77. 76Fra: T.L. Francavilla and F.L. Carter, “Critical-Magnetic-Field Curve of Lanthanum Sesquicarbide,”Phys. Chem. B, 14, 128 (1976).Google Scholar
  78. 76Gin: K.A. Gingerich, D.L. Cocke, and J.E. Kingcade, “Stability of Complex Cerium Carbide Molecules,”Inorg. Chim. Acta, 17, L1 (1976).CrossRefGoogle Scholar
  79. 76Loe: I.R. Loe, I.J. McColm, and T.A. Quigley, “Cubic to Tetragonal Transformations in Dicarbides. III. Enthalpies and Strain Energies of HoC2−NdC2 and GdC2−LaC2 Solid Solutions,”J. Less-Common Met., 46, 217 (1976).CrossRefGoogle Scholar
  80. 77Mal: G. Male, “New Method of Preparing the Rare Earth Metals, Contribution to a Study of the Carbo-Thermic Reduction of their Oxides I. Carbothermal Reduction of the Rare Earth Sesquioxides. Preparation of the Dicarbides,”Rev. Int. Hautes Temp. Réfract., 14, 179 (1977).Google Scholar
  81. 78Ada: G.-Y. Adachi, F. Tonomura, Y. Shibata, and J. Shiokawa, “Phase Transformations of Rare Earth Dicarbide Solid Solutions,”J. Inorg. Nucl. Chem., 40, 489 (1978).CrossRefGoogle Scholar
  82. 78Bus: K.H.J. Buschow and H.M. Beekmans, “Magnetic and Electrical Properties of Amorphous Alloys of Gd and C, Al, Ga, Ni, Cu, Rh, or Pd,”Rapidly Quenched Metals, III, Vol. 2, Proc. 3rd Int. Conference on Rapidly Quenched Metals, Univ. Sussex, Brighton, Jul 78, B. Canter, Ed., Chameleon Press Ltd., London, 133 (1978).Google Scholar
  83. 78Ver: L.F. Vereshchagin, V.I. Novokshonov, and V.V. Evdokimova, “Superconductivity of Lutetium Sesquicarbide,”Fiz. Tverd. Tela, 20, 3109 (1978) in Russian; TR:Sov. Phys. Solid State, 20, 1792 (1978).Google Scholar
  84. 79Ver: L.F. Vereshchagin, V.I. Novokshonov, V.V. Evdokimova, and E.P. Khlybov, “Superconductivity of Yttrium Sesquicarbide Synthesized at High Pressures,”Fiz. Tverd. Tela, 21, 569 (1979) in Russian; TR:Sov. Phys. Solid State, 21, 336 (1979).Google Scholar
  85. 80Bau: J. Bauer and H. Bienvenu, “On the Crystal Structures of the Phases Yb15C19 and Lu15C19,”C. R. Acad. Sci., Ser. C, 290, 387 (1980).Google Scholar
  86. 80Elm: M. El Mahrini, D. Guérard, P. Lagrange, and A. Hérold, “Intercalation of Rare Earth Metals in Graphite,”Physica, B, 99, 481 (1980).CrossRefGoogle Scholar
  87. 80Gin: K.A. Gingerich and R. Haque, “Atomization Energies of Complex Gaseous Yttrium Carbides,”J. Chem. Soc., Faraday Trans. II, 76, 101 (1980).CrossRefGoogle Scholar
  88. 80Mie: A.R. Miedema, P.F. de Chatel, and F.R. deBoer, “Cohesion in Alloys—Fundamentals of a Semiempirical Model,”Physica, 100B, 1 (1980).Google Scholar
  89. 80Nov: V.I. Novokshonov, “Synthesis of the Sesquicarbides of the Heavy Lanthanides and Yttrium at High Pressures and Temperatures,”Zh. Neorg. Khim., 25, 684 (1980) in Russian; TR:Russ. J. Inorg. Chem., 25, 375 (1980).Google Scholar
  90. 81Ato: M. Atoji, “Neutron-Diffraction Study of Cubic ErC0.6 in the Temperature Range 1.6—296 K,”J. Chem. Phys., 74, 1898 (1981).CrossRefADSGoogle Scholar
  91. 81Gin: K.A. Gingerich, M. Pelino, and R. Haque, “Thermodynamic Study of the Molecules LaC2, LaC3, LaC4, LaC5, and LaC6 by Knudsen Effusion Mass Spectrometry,”High Temp. Sci., 14, 137 (1981).Google Scholar
  92. 81Haq: R. Haque and K.A. Gingerich, “Identification and Atomization Energies of Gaseous Molecules ScC2, ScC3, ScC4, ScC5, and ScC6 by High-Temperature Mass Spectrometry,”J. Chem. Phys., 74, 6407 (1981).CrossRefADSGoogle Scholar
  93. 81Lvo: B.V. L’vov, L.A. Pelieva, and I. Novotny, “Determination of the Atomization Energy of Gaseous Dysprosium Dicarbide Using Electrothermal Atomic Absorption Spectrometry,”Zh. Prikl. Spetrosk., 35, 403 (1981) in Russian; TR:J. Appl. Spectrosc., 35, 954 (1981).Google Scholar
  94. 81Mcc: I.J. McColm, “The Cubic-Tetragonal Transformation in Metal Carbides. IV: F-Orbital Participation in Bonding and its Effect on Hardness and Transition Temperatures of Rare Earth Dicarbides and Their Solid Solutions,”J. Less-Common Met., 78, 287 (1981).CrossRefGoogle Scholar
  95. 81Nie: A.K. Niessen and F.R. deBoer, “The Enthalpy of Formation of Solid Borides, Carbides, Nitrides, Silicides, and Phosphides of Transition and Noble Metals,”J. Less-Common Met., 82, 75 (1981).CrossRefGoogle Scholar
  96. 82Gin: K.A. Gingerich, R. Haque, and M. Pelino, “Identification and Atomization Energies of Gaseous LaC7 and LaC8 by High-Temperature Mass Spectrometry,”J. Chem. Soc., Faraday Trans. I, 78, 341 (1982).CrossRefGoogle Scholar
  97. 82Has: J.M. Haschke and T.A. Deline, “Vaporization and Thermodynamic Properties of Samarium Dicarbide and Substoichiometric Disamarium Tricarbide,”J. Chem. Thermodyn., 14, 1019 (1982).CrossRefGoogle Scholar
  98. 82Pal: P.E. Palmer, H.R. Burkholder, B.J. Beaudry, and K.A. Gschneidner, Jr., “The Preparation and Some Properties of Pure Mischmetal,”J. Less-Common Met., 87, 135 (1982).CrossRefGoogle Scholar
  99. 82Sak: T. Sakai, G.-Y. Adachi, T. Yoshida, S.Y. Ueno, and J. Shiokawa, “Preparation and Physical Properties of EuC2 and its Solid Solutions, RxEu1−xC2 (R=La and Gd),”Bull. Chem. Soc. Jpn., 55, 699 (1982).CrossRefGoogle Scholar
  100. 83Gsc: K.A. Gschneidner, Jr. and F.W. Calderwood, “Use of Systematics for the Evaluation of Rare-Earth Phase Diagrams and Crystallographic Data,”Bull. Alloy Phase Diagrams, 4, 129 (1983).Google Scholar
  101. 83Kin: J.E. Kingcade, Jr., D.L. Cocke, and K.A. Gingerich, “Thermodynamic Stabilities of the Gaseous Cerium Carbides CeC, CeC2, CeC3, CeC4, CeC5, and CeC6,”High Temp. Sci., 16, 89 (1983).Google Scholar
  102. 83Zha: Y.X. Zhao, Z. Lui, S. Guo, X. Xu, S. Wang, and Z. Zhao, “High-Pressure Synthesis ofD5c-Type Y2C3,”Acta Phys. Temp. Humilis Sin., 5, 88 (1983).Google Scholar
  103. 84Cor: B. Cort, G.R. Stewart, and A.L. Giorgi, “Specific Heat Studies of Lanthanum and Yttrium Sesquicarbides,”J. Low Temp. Phys., 54, 149 (1984).CrossRefADSGoogle Scholar
  104. 84Kin: J.E. Kingcade, Jr., D.L. Cocke, and K.A. Gingerich, “Thermodynamic Study and Stabilities of Complex Dicerium Carbide Molecules,”Inorg. Chem., 23, 1334 (1984).CrossRefGoogle Scholar
  105. 84Pel: M. Pelino, K.A. Gingerich, B. Nappi, and R. Haque, “Thermodynamic Study of the Gaseous Dilanthanum Carbides, La2C2, La2C3, La2C4, La2C5, La2C6, and La2C8 by High-Temperature Mass Spectrometry,”J. Chem. Phys., 80, 4478 (1984).CrossRefADSGoogle Scholar

Copyright information

© Springer 1986

Authors and Affiliations

  • K. A. Gschneidner
    • 1
  • F. W. Calderwood
    • 1
  1. 1.Rare-Earth Information Center, Ames LaboratoryIowa State UniversityAmes

Personalised recommendations