Skip to main content
Log in

Effect of latent iron deficiency on GABA and glutamate neuroreceptors in rat brain

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Eight weeks of latent iron deficiency in weaned female rats of Sprague Dawley strain maintained on experimental low-iron diet (18–20 mg/kg) did not significantly change the gross body, weight and tissue weights of brain and liver. Packed cell volume (PCV) and hemoglobin concentration remained unaltered. However, non-heme iron content in liver and brain decreased significantly (p<0.001). The activities of glutamate dehydrogenase, glutamic acid decarboxylase, and GABA-transaminase (GABA-T) in brain decreased by 15%, 11.4% and 25.7% respectively. However, this decrease was not statistically significant. Binding of3H Muscimol at pH 7.5 and 1 mg protein/assay increased by 143% (p<0.001) in synaptic vesicular membranes from iron-deficient rats as compared to the controls.3H glutamate binding to the synaptic vesicles was also carried out under similar condition. However, the L-glutamate binding was reduced by 63% in the vesicular membranes of iron deficient animals. These studies indicate that iron plays important functional role in both excitatory and inhibitory neurotransmitter receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baynes, R.D. and Bothwell,T.H. (1990) Iron deficiency. Annu. Rev. Nutr 10, 133–148

    Article  PubMed  CAS  Google Scholar 

  2. American Medical Association Council of foods and Nutrition Committee on Iron deficiency (1968) Iron deficiency in the United States. J. Am. Med. Assoc. 203, 497

    Google Scholar 

  3. Shukla, A., Agarwal, K.N., Chansuria, J.P.N., and Taneja, V. (1989a) Effect of latent iron deficiency on 5-hydroxytryptamine metabolism in rat brain. J. Neurochem. 52, 730–735

    Article  PubMed  CAS  Google Scholar 

  4. Shukla, A., Agarwal, K.N. and Shukla, G.S. (1989b) Effect of latent iron deficiency on metal levels of rat brain region. Biol. Trace. Ele. Res. 22, 141–152

    Article  CAS  Google Scholar 

  5. Pollit, E., Soemantri, A.G., Yonis F., and Scrimshaw, N.S. (1985) Cognitive effects of iron deficiency anemia. Lancet. 19, 158

    Article  Google Scholar 

  6. Pollit, E., and Kim, I (1988) Learning and achievement among iron deficient children.in Brain Iron: Neuro-chemical and behavioral aspects (Youdim, M.B.H., ed.) pp 115–144, Taylor and Francis, New York

    Google Scholar 

  7. Agarwal, K.N. (1990) Effect of malnutrition and iron deficiency on mental function and study of possible mechanisms in animal model. Proc. Ind. Natl. Sci Acad B56(1) 43–50

    Google Scholar 

  8. Taneja, V; Mishra, K.P., and Agarwal, K.N. (1986) Effect of early iron deficiency in rat brain on the gamma-amino-butyric acid shunt in brain. J. Neurochem. 46, 1670–1674.

    Article  PubMed  CAS  Google Scholar 

  9. Li, D. (1998) Effect of iron-deficiency on iron deficiency on iron distribution and gamma-amino-butyric acid (GABA)metabolism in young brain tissues. Hokkaido Igaku Zasshi, 73, 215–225.

    PubMed  CAS  Google Scholar 

  10. Prasad C, Devi R, and Agarwal K.N. (1979) Effect of dietary protein on fetal brain protein and glutamic acid metabolism in rat. J Neurochem. 32, 1309–1314.

    Article  PubMed  CAS  Google Scholar 

  11. Prasad, C., and Agarwal, K.N. (1980) Intrauterine malnutrition and brain: Effects on enzymes and free amino acids related to glutamate metabolism. J Neurochem. 34, 1270–1273.

    Article  PubMed  CAS  Google Scholar 

  12. Lodge, D., and Johnson, K.N. (1990) Non-competitive excitatory amino acid receptor antagonists. Trends Pharmacol. Sci. 11, 81–86.

    Article  PubMed  CAS  Google Scholar 

  13. Watkins, J.C., Krogsaardlarsen, P., and Honore, T. (1990) Structure activity relationships in development of receptor agonists and competitive antagonists. Trends Pharmacol Sci. 11, 25–33.

    Article  PubMed  CAS  Google Scholar 

  14. Ito, M. (1989) Long-term depression. Annu. Rev. Neurosci. 12, 85–102.

    Article  PubMed  CAS  Google Scholar 

  15. Rauschecker, J.P. (1991) Mechanism of visual plasticity-Hebb synapses, NMDA receptors and beyond. Physiol. Rev., 71, 210–214.

    Google Scholar 

  16. Bowery, N.G., Hill, D.R., and Hudson, A.L. (1983) Characteristics of GABA-B receptor binding sites on rat whole brain synaptic membrane. Br. J. Pharmacol. 78, 191–206.

    PubMed  CAS  Google Scholar 

  17. Leinekugel, X., Khalilov, I., McLean, H., Callard, O., Gararsa, J.L., Ben-Ari, Y., and Khazipov, R. (1999) GABA is the fast-acting excitatory transmitter in neonatal brain. Adv. Neurol., 79, 189–201.

    PubMed  CAS  Google Scholar 

  18. Newberry, N.R., and Nicoll, R.A. (1984) Direct hyper-polarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452.

    Article  PubMed  CAS  Google Scholar 

  19. Nakanishi, S., Nakajima, Y., Masu, M., Ueda, Y., Nakahara, K., Watanabe, D., Yamaguchi, S., Kawabata, S., and Okada, M. (1998) Glutamate receptors: brain function and signal transduction. Brain Res. Rev. 2–3, 230–235.

    Article  Google Scholar 

  20. Ozawa, S., Kamiya, H., and Tsuzuki, K. (1998) Glutamate receptors in mammalian central nervous system. Prog. Neurobiol. 54, 581–618.

    Article  PubMed  CAS  Google Scholar 

  21. Palmada, M., and Centelles, J.J. (1998) Excitatory amino-acid neurotransmission. Pathways for metabolism, storage and re-uptake of glutamate in brain. Front. Biosci 3, D701–718.

    Google Scholar 

  22. Hallgreen, B (1953) Hemoglobin formation and storage iron in protein deficiency. Acta Soc. Med. (Uppasala) 59, 79–200

    Google Scholar 

  23. Taneja, V., Mishra, K.P., and Agarwal, K.N. (1990) Effect of maternal iron deficiency on GABA shunt pathway of developing rat brain. Ind. J. Exp. Biol. 28, 466–469

    CAS  Google Scholar 

  24. Hell, J.W., Maycox, P.R., and John, R. (1990) Energy dependence and functional re-constitution of gamma-amino-butyric acid carrier from synaptic vesicles. J. Biol. Chem., 265, 2111–2117.

    PubMed  CAS  Google Scholar 

  25. Seth, P.K., Agarwal, K.N., and Bondy, S.C. (1981) Biochemical changes in the brain consequently to dietary exposure to developing and mature rats to clorodecone. Toxicol. Appl. Pharmacol. 59, 262–267.

    Article  PubMed  CAS  Google Scholar 

  26. Cross, A., Skan, W., and Slater, P. (1986) Binding sites for3H glutamate and3H aspartate in human cerebellum. J. Neurochem. 47, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  27. Hall, H., and Thor, L. (1979) Evaluation of semiautomated filteration technique for receptor binding studies. Life. Sci. 24, 2293–2300.

    Article  PubMed  CAS  Google Scholar 

  28. Siilmes, M.A., Refine, C., and Dallman, P.R. (1980) Manifestation of iron deficiency at various levels of dietary intake. Am. J. Clin. Nut. 3, 570–574.

    Google Scholar 

  29. Scheuer, K., Maras, A., Gattaz, W.F., Cairns, N., Forstl, H. and Muller, W.E. (1996) Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer's disease. Dementia 7, 210–214.

    Article  PubMed  CAS  Google Scholar 

  30. Agarwal, K.N. (2001) Iron and the brain: neurotransmitter receptors and magnetic resonance spectroscopy. Br J Nutr. 2001 85 Suppl 2: S147–50.

    Google Scholar 

  31. Bordi, F. and Ugolini, A. (1999) Group I metabotropic glutamate receptors: implications for brain disease. Prog. Neurobiol. 59, 55–79.

    Article  PubMed  CAS  Google Scholar 

  32. Albin, R.L., Young A.B. Pandey, J.B., Handelin, B., and Balfour, R., et al. (1990) Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presynaptic Huntington's disease. N. Engl. J. Med., 322, 1293–1298.

    Article  PubMed  CAS  Google Scholar 

  33. Calabresi, P., Centonze, D., Pisani, A., and Bernardi, G. (1999) Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implications for ischemia and Huntington's disease. Expt. Neurol., 158, 97–108.

    Article  CAS  Google Scholar 

  34. Chalmers, D.T., Dewar, D., Graham, D.L., Brooks, D.N., and McCulloch, J. (1990) Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type. Proc. Natl. Acad. Sci. (USA) 87, 1352–1356.

    Article  CAS  Google Scholar 

  35. Sherwin, A.L. (1999) Neuro-active aminoacids in focally epileptic human brain: a review. Neurochem. Res., 24, 1387–1395.

    Article  PubMed  CAS  Google Scholar 

  36. Kowel, N.W., Ferrante, R.J., and Martin, J.B. (1987) Pattern of cell loss in Huntington's disease. Trends Neurosci. 10, 24–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, R.D., Pandey, A., Mittal, B. et al. Effect of latent iron deficiency on GABA and glutamate neuroreceptors in rat brain. Indian J Clin Biochem 18, 111–116 (2003). https://doi.org/10.1007/BF02867677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02867677

Key words

Navigation