Indian Journal of Clinical Biochemistry

, Volume 18, Issue 2, pp 169–180 | Cite as

Characterization of lectins and their specificity in carcinomas—An appraisal

  • Asma Farhat Sherwani
  • Sameena Mohmood
  • Fauzia Khan
  • Rizwan Hasan Khan
  • Md. Asim Azfer


Lectins, a group of specific glycoproteins present in animal as well as plant cells, are used as differentiating markers to study cancers and metastatic cell lines. This property of lectins depends on the process of cellular glycosylation. Glycosylation of some of the extracellular membrane proteins and lipids maintains the cell/cell and cell/matrix interactions. Chemical alterations in glycosylation play an important role in the metastatic behavior of tumor cells. Carbohydrate residues of the membrane glycoproteins can be detected using lectins due to their binding specificity to carbohydrates. Lectins, therefore have gained an importance in the field of cancer research. Galectins, a specialized group of lectin like proteins that are Ca+ independent and galactoside binding, are also considered as differentiation markers in some specific cancers like the carcinomas of thyroid.

Thus the use of lectins and galectins to identify specific carbohydrates present on cell surface help in invasion and metastasis processes.

Key words

lectins metastasis cellular glycosylation prognostic markers galectins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greenlee, R. T., Murray, T., Bolden, S. and Wingo, P. A. (2000) Cancer statistics. Cancer J. Clin. 50(1), 7–33.Google Scholar
  2. 2.
    Du, W. B., Chia, K. S., Sankaranarayanan, R., Sankila, R., Seow, A. and Lee, H. P. (2002) Population-based survival analysis of colorectal cancer patients in Singapore, 1968–1992. Int. J. Cancer 99, 460–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Sen, U., Sankaranarayanan, R., Mandal, S., Ramanakumar, A. V., Parkin, D. M. and Siddiqi, M. (2002) Cancer patterns in eastern India: the first report of the Kolkata cancer registry. Int. J. Cancer 100, 86–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Thongsuksai, P., Sriplung, H., Phungrassami, T. and Prechavittayakul, P. (1997) Cancer incidence in Songkhla, southern Thailand, 1990–1994. Southeast Asian J. Trop. Med. Public Health 28 (Suppl 3, 1–10.PubMedGoogle Scholar
  5. 5.
    Hart, I. R., Goode, N. R. and Wilson, R. E. (1989) Molecular aspects of the metastatic cascade. Biochim. Biophys. Acta 989, 65–84.PubMedGoogle Scholar
  6. 6.
    Hart, I. R. and Saini, A. (1992) Biology of tumour metastasis. Biol. Tum. Metab. 339, 1453–61.Google Scholar
  7. 7.
    Sasaki, T., Yamazaki, K., Yamori, T. and Endo, T. (2002) Inhibition of proliferation and induction of differentiation of glioma cells withDatura stramonium agglutinin. Br. J. Cancer 87, 918–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein, I. J. and Hayes, C. E. (1978) The lectins: Carbohydrate—binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 35, 127–340.PubMedCrossRefGoogle Scholar
  9. 9.
    Fernandes, B., Sagman, U., Auger, M., Demetrio, M. and Dennis, J. W. (1991) Beta 1–6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 51, 718–23. Comment in: Cancer Res. (1994). 54, 306–8.PubMedGoogle Scholar
  10. 10.
    Teshima, S., Hirohashi, S., Shimosato, Y., Kishi, K., Ino, Y., Matsumoto, K. and Yamada, T. (1984) Histochemically demonstrable changes in cell surface carbohydrates of human germ cell tumors, Lab. Invest. 50, 271–7.PubMedGoogle Scholar
  11. 11.
    Vijayan, K. K., Remani, P., Beevi, H., Ankathil, R., Vijaykumar, T., Radendran, R., Augustine, J. and Vasudevan, D. M. (1987) Tissue binding pattems of lectins in premalignant and malignant lesions of the oral cavity. J. Exp. Pathol. 3, 295–304.PubMedGoogle Scholar
  12. 12.
    Bironaite, D., Nesland, J. M., Dalen, H., Risberg, B. and Bryne, M. (2000) N-Glycans influence the in vitro adhesive and invasive behaviour of three metastatic cell lines. Tumour Biol. 21, 165–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Litynska, A., Przybylo, M., Ksiazek, D. and Laidler, P. (2000) Differences of alpha3 beta1 integrin glycans from different human bladder cell lines. Acta Biochim. Pol. 47, 427–34.PubMedGoogle Scholar
  14. 14.
    Hull, H., Sugarman, E., Spielman, J. and Carraway, K. (1991) Biosynthetic maturation of an ascites tumor cell surface sialomucin. Evidence for O-glycosylation of cell surface glycoprotein by the addition of new oligosaccharides during recycling. J. Biol. Chem. 266 (21), 13580–13586.PubMedGoogle Scholar
  15. 15.
    Klein, P. J., Vierbuchen, M., Wurz, H., Schulz, K. D. and Newman, R. A. (1981) Secretion associated lectin—binding sites as a parameter of hormone dependence in mammary carcinoma. Brit. Jr. Can. 44, 476–78.Google Scholar
  16. 16.
    Klein, P. J., Vierbuchen, M., Fischer, J., Schulz, K. D., Farrar, G. and Uhlenbruck, G. (1983) The significance of lectin receptors for the evaluation of hormone dependence in breast cancer. Jr. Str. Biochem. 19, 839–44.CrossRefGoogle Scholar
  17. 17.
    Luis, C. L., Sztynda, T., Cheng, Z. H. and Wyllie, R. G. (1983) Lectin—binding affinities of human breast tumors. Cancer. 52, 1244–50.CrossRefGoogle Scholar
  18. 18.
    Leathem, A., Dokal, I. and Atkins, N. (1984) Carbohydrate expression in breast cancer as an early indicator of metastatic potential. Jr. Path. 142, A32.Google Scholar
  19. 19.
    Leathem, A. J., Atkins, N. and Eisen, T. (1985) Breast cancer metastsis, survival and carbohydrate expression associated with lectin binding. J. Path. 145, 73A.Google Scholar
  20. 20.
    Brooks, S. and Leathem, A. J. C. (1991) Prediction of lymph node invovement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet. 338, 71–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Leathem, A. J. and Brooks, S. A. (1987) Predictive value of lectin binding on breast cancer recurrence and survival. Lancet. 1054–1056.Google Scholar
  22. 22.
    Schumacher, U., Adam, E., Brooks, S. A. and Leathem, A. J. (1995) Lectin binding properties of human breast cancer cell lines and human milk with particular reference toHelix pomatia agglutinin. J. Histochem. Cytochem. 43, 275–281.PubMedGoogle Scholar
  23. 23.
    Schumacher, U., Kretzschmar, H., Brooks, S. and Leathem, A. (1992) Helix pomatia lectin binding pattern of brain metastasis originating from breast cancers. Path. Res. Prac. 188, 284–86.Google Scholar
  24. 24.
    Krogerus, L. and Andersson, L. C. (1990) Different lectin—binding patterns in primary breast cancers and their metastasis. Cancer 66, 1802–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Schumacher, U., Higgs, D., Loizidou, M., Pickering, R., Leathem, A. and Taylor, I. (1994) The lectin Helix pomatia agglutinin is a good prognostic marker in colon cancer. Cancer 74, 3104–3107.PubMedCrossRefGoogle Scholar
  26. 26.
    Alam, S. M., Whitford, P., Cushley, W., George, W. D. and Campbell, A. M. (1990) Flow cytometric analysis of cell surface carbohydrates in metasattic human breast cancer. Brit. Jr. Can. 62, 238–42.Google Scholar
  27. 27.
    Fenlon, S., Ellis, I. O., Bell, J., Todd, J. H., Elston, C. W. and Blamey, R. W. (1987) Helix pomatia and Ulex europeus lectin binding in humanbreast cancer. Jr. Path. 152, 169–76.CrossRefGoogle Scholar
  28. 28.
    Fukutomi, T., Itabashi, M., Tsugane, S., Yamamoto, H., Nanasawa, T. and Hirota, T. (1989) Prognostic contributions of Helix pomatia and carcinoembryonic antigen staining using histochemical techniques in breast carcinomas. Jpn. Jr. Clin. Onco. 19, 127–134.Google Scholar
  29. 29.
    Noguchi, M., Thomas, M., Kitagawa, H., Kinoshita, K., Ohta, N., Nagamori, M. and Miyazaki, I. (1993) Further analysis of predictive value of Helix pomatia lectin binding to primary breast cancer of axillary and internal mammary lymph node metastasis. Br. Jr. Can. 67, 1368–71.Google Scholar
  30. 30.
    Thomas, M., Noguchi, M., Fonseca, L., Kitagawa, H., Kinoshita, K. and Miyazaki, I. (1993) Prognostic significance of Helix pomatia lectin and c—erbB—2 oncoprotein in human breast cancer. Br. Jr Can. 68, 621–26.Google Scholar
  31. 31.
    Galea, M. H., Ellis, I. O., Bell, J., Elston, C. W. and Blamey, R. W. (1991) prediction of lymph node involvement in breast cancer. Lancet. 338, 392–93.CrossRefGoogle Scholar
  32. 32.
    Taylor, C. W., Anbazhagan, R., Jayatilake, H., Adams, A., Gusterson, B. A., Price, K., Gelber, R. D. and Goldhirsch, A. (1991) Helix pomatia in breast cancer. Lancet. 338, 580.PubMedCrossRefGoogle Scholar
  33. 33.
    Gusterson, B. A. and International (Ludwig) Breast Cancer Study Group (1993) Prognostic value of Helix pomatia in breast cancer. Br. Jr. Can. 68, 146–50.Google Scholar
  34. 34.
    Leathern, A. J. and Brooks, S. A. (1987) Predictive value of lectin binding on breast cancer recurrence and survival. Lancet. 1054–1056.Google Scholar
  35. 35.
    Brooks, S. A. and Leathem, A. J. C. (1991) Prediction of lymph node invovement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet. 338, 71–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Alam, S. M., Whitford, P., Cushley, W., George, W. D. and Campbell, A. M. (1990) Flow cytometric analysis of cell surface carbohydrates in metasattic human breast cancer. Brit. Jr. Can. 62, 238–42.Google Scholar
  37. 37.
    Ikeda, Y., Mori, M., Adachi, Y., Matsushima, T. and Sugimachi, K. (1994) Prognostic value of the histochemical expression of helix pomatia agglutinin in advanced colorectal cancer. A univariate and multivariate analysis. Dis. Colon Rectum. 37, 181–184.PubMedCrossRefGoogle Scholar
  38. 38.
    Kakeji, Y., Tsujitami, S., Mori, M., Maehara, Y. and Sugimachi K. (1991) Helix pomatia agglutinin binding activity is a predictorof survival time for patients with gastric carcinoma. Cancer 68, 2438–2442.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshida, Y., Okamura, T. and Shirakusa, T. (1993) An immunohistochemical study ofHelix pomatia agglutinin binding on carcinomas of the esophagus. Surg. Gynecol. Obstet. 177, 632.Google Scholar
  40. 40.
    Schumacher, U. (1990) Vergleichende histologische, histochemische und ultrastrukturelle untersuchungen zum Nachweis und zur Bedeutung von kohlenhydrathaltigen Verbindungen in der Mamma: Drusenepithel, Milchfettkugelmembran, Bindegewebe. Habilitapionschrift. Thesis, University of Munchen.Google Scholar
  41. 41.
    Walker, R. A. (1993) Helix pomatia and prognosis of breast cancer. Br. J. Can. 68, 453–54.Google Scholar
  42. 42.
    Walker, R. A. (1990) Assessment of milk fat gobule membrane antibodies and lectins as markers of short-term prognosis in breast cancer. Br. J. Can. 62, 462–66.Google Scholar
  43. 43.
    Beltrao, E. I., Correia, M. T., Figueredo-Silva, J. and Coelho, L. C. (1998) Binding evaluation of isoform 1 from Cratylia mollis lectin to human mammary tissues. Appl. Biochem. Biotechnol. 74(3): 125–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Boland, C. R. and Roberts, J. A. (1998) Quantitation of lectins. Jr. Histochem. Cytochem. 36, 1305–07.Google Scholar
  45. 45.
    Jordinson, M., El-Hariry, I., Calnan, D., Calam, J. and Pignatelli, M. (1999)Vicia faba agglutinin, the lectin present in broad beans, stimulates differentiation of undifferentiated colon cancer cells. Gut. 44(5): 709–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Muto, S., Sakuma, K., Taniguchi, A. and Matsumoto, K. (1999) Human mannose—binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amount of Lewis A and Lewis B antigens. Biol. Pharm. Bull. 22(4): 347–52.PubMedGoogle Scholar
  47. 47.
    Femandez-Rodriguez, J., Feijoo-Camero, C., Merino-Trigo, A., Paez de la Cadena, M., Rodriguez-Berrocal, F. J., de Carlos, A., Butron, M. and Martinez-Zorzano, V. S. (2000) Immunohistochemical analysis of sialic acid and fucose composition in human colorectal adenocarcinoma. Tumor Biol. 21(3): 153–64.CrossRefGoogle Scholar
  48. 48.
    Ching, C. K. and Rhodes, J. M. (1990) Purification and characterization of a peanut agglutinin binding pancreatic—cancer—related serum mucous glycoprotein. Intr. Jr. Can. 45, 1022–27.CrossRefGoogle Scholar
  49. 49.
    Nishimura, K., Watnabe, A. and Sasaki, H. (1993) Newly established human pancreatic carcinoma cell lines and their lectin binding properties. Intr. Jr. Panreat. 13, 31–41.Google Scholar
  50. 50.
    Kawa, S., Kato, M., Oguchi, H., Kobayashi, T., Furuta, S. and Kanai, M. (1991) Preparation of pancreatic cancer—associated mucin expressing CA19-9, CA50, Span-1, sialyl SSEA- 1, and Dupan- 2. Scand. Jr. Gastroentero. 26, 981–92.CrossRefGoogle Scholar
  51. 51.
    Kawa, S., Kato, M., Oguchi, H., Hsue, G. L., Kobayashi, T., Koiwai, T., Tokoo, M., Furuta, S., Ichikawa, T. and Kanai, M. (1992) Clinical evaluation of pancreatic cancer—associated mucin expressing CA19-9, CA50, Span-1, sialyl SSEA-1, and Dupan-2. Scand. Jr. Gastroentero. 27, 635–43.CrossRefGoogle Scholar
  52. 52.
    Ohta, H., Sawabu, N., Odani, H., Kawakami, H., Watanabe, H., Toya, D., Ozaki, K. and Hattori, N. (1990) Characterization of gamma—glutamyltranspeptidase from human pancreatic cancer. Pancreas. 5, 82–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Hada, T., Kondo, M., Yasukawa, K., Amuro, Y. and Higashino, K. (1999) Discrimination of liver cirrohosis from chronic hepatitis by measuring the ratio ofAleuria aurantia lectin—reactive serum cholinesterase to immunoreactive protein. Clin. Chim. Acted. 281(1–2): 37–46.CrossRefGoogle Scholar
  54. 54.
    Kumada, T., Nakano, S., Takeda, I., Kiriyama, S., Sone, Y., Hayashi, K., Katoh, H., Endoh, T., Sassa, T. and Satomura, S. (1999) Clinical utility ofLens culinaris agglutinin—reactive alpha—fetoprotein in small hepatocellular carcinoma: special refrence to imaging diagnosis. J Hepatol. 30(1): 125–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Fukushima, K., Hada, T., Higashino, K. and Yamashita, K. (1998) Elevated serum levels ofTricosanthus japonica agglutinin-l binding alkaline phosphatase in relation to high—risk groups for hepatocellular carcinomas. Clin. Cancer Res. 4(11): 2771–7.PubMedGoogle Scholar
  56. 56.
    Ward, G. K., Steward, S. S., Price, G. B. and Mackillop, J. W. (1987) Cellular heterogeneity in normal human urothelium: quatitative studies of lectin binding. Histochem. Jr. 19, 337–44.CrossRefGoogle Scholar
  57. 57.
    Orntift, T. F., Petersen, S. E. and Wolf, H. (1988) Dual—parameter flow cytometry of transitional cell carcinomas. Quantitation of DNA content and binding of carbohydrate ligands in cellular subpopulations. Cancer. 61, 963–70.CrossRefGoogle Scholar
  58. 58.
    Langkilde, N. C., Wolf, H. and Orntoft, T. F. (1989a) Binding of wheat and peanut lectins to human transitional cell carcinomas. Cancer. 64, 849–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Langkilde, N. C., Wolf, H., Clausen, H. and Orntoft, T. F. (1992) Human urinary bladder carcinoma glycoconjugates expressing T—( Gal beta (1–3) GalNac alpha 1—O—R) and T—like antigens: a comparitive study using peanut agglutinin and poly—and monoclonal antibodies. Cancer Research. 52, 5030–36.PubMedGoogle Scholar
  60. 60.
    Langkilde, N. C., Wolf, H. and Orntoft, T. F. (1989 b) Lectinohistochemistry of human bladder cancer: loss of lectin binding structures in invasive carcinomas. APIMS. 97, 367–73.CrossRefGoogle Scholar
  61. 61.
    Ward, G. K., Steward, S. S., Dotsikas, G., Price, G. B. and Mackillop, W. J. (1992) Cellular heterogeneity in human transitional cell carcinoma: an analysis of optical properties and lectin binding. Histochem. J. 24, 685–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Kunze, E., Schulz, H., Adamek, M. and Gabius, H. J. (2000) Long term administration of galactoside—specific mistletoe lectin in an animal model: no protection against N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder carcinogenesis in rats and n induction of a relevant local cellular immune response. J Cancer Res. Clin. Oncol. 126, 125–38.PubMedCrossRefGoogle Scholar
  63. 63.
    Soderstrom, K. O. (1987) Lectin binding to prostatic adenocarcinoma. Cancer 60, 1823–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Loy, T. S., Kyle, J. and Bickel, J. T. (1989) Binding of soyabean agglutinin lectin to prostatic hyperplasia and adenocarcinoma. Cancer 63, 1583–86.PubMedCrossRefGoogle Scholar
  65. 65.
    McNeal, J. E., Alroy, J., Villers, A., Rewine, E. A., Friha, F. S. and Stamey, T. A. (1991) Mucinous differentiation in prostatic adenocarcinoma. Human Pathology. 22, 979–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Shiraishi, T., Atsumi, S. and Yatani, R. (1992) Comparitive study of prostatic carcinoma bone metastasis among Japanese in Japan and Japanese Americans and whites in Hawaii. Advan. Exp. Medi. Bio. 324, 7–16.Google Scholar
  67. 67.
    Aoki, D., Nozawa, S., lizuka, R., Kawakami, H. and Hirano, H. (1990) Differences in lectin binding patterns of normal endometrium and endometrial adenocarcinoma with special reference to staining with Ulex europeus agglutinin—1 and peanut agglutinin. Gynae. Onco. 37, 338–45.CrossRefGoogle Scholar
  68. 68.
    Sumi, S., Arai, K., Kitahara, S. and Yoshida, K. (1999) Serial lectin affinity chromatography demonstrates altered asparagines—linked sugar—chain structures of prostate specific antigen in human prostate carcinomas. J. Chromtogr. B. Biomed. Sci. Appl. 727(1–2): 9–14.CrossRefGoogle Scholar
  69. 69.
    Fritz, P., Seizer-Schmidt, R., Murdter, T. E., Kroemer, H. K., Aulitzky, W., Andre, S., Gabius, H. J., Friedel, G., Toomes, H. and Siegle, I. (1999) Ligands for Viscum album agglutinin and Galectin—I in human lung cancer. Is there any prognostic relevance? Acta Histochem. 101, 239–53.PubMedGoogle Scholar
  70. 70.
    Fischer, E., Wagner, M. and Bertsch, T. (2000)Cepaea hortensis agglutinin-I, specific for O-glycosidically linked sialic acids, selectively labels endothelial cells of distinct vascular beds. Histochem J. 32, 105–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Lahm, H., Hoeflich, A., Andre, S., Sordat, B., Kaltner, H., Wolf, E. and Gabius H (2000) Gene expression of galectin—9/ecalectin, a potent eosinophil chemoattractant, and/or the insertional isoform in human colorectal carcinoma cell lines and detection of frameshift mutations for protein sequence truncations in the second functional lectin domain. Int. J. Oncol. 17, 519–24.PubMedGoogle Scholar
  72. 72.
    Danguy, A., Camby, I. and Kiss, R. (2002) Galectins and cancer. Biochim Biophys Acted. 1572(2–3): 285–93.Google Scholar
  73. 73.
    Bassen, R., Brichory, F., Caulet-Maugendre, S., Delaval, P. and Dazord, L. (2000) Vertebrate galectins: structure and function, role in tumoral process. Bull. Cancer 87, 703–7.PubMedGoogle Scholar
  74. 74.
    Bernerd, F., Sarasin, A. and Magnaldo, T. (1999) Galectin—7, overexpression is associated with the apoptotic process in UVB—induced sunbum keratinocytes. Proc. Natl. Acad. Sci. USA. 96, 11329–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Magnaldo, T., Fowlis, D. and Darmon, M. (1998) Galectin-7, a marker of all types of stratified epithelia. Differentiation. 63, 159–68.PubMedCrossRefGoogle Scholar
  76. 76.
    Gopalkrishnan, R. V., Roberts, T., Tuli, S., Kang, D., Christiansen, K. A. and Fisher, P. B. (2000) Molecular characterization of prostate carcinoma tumor antigen—I, a human galectin—8 related gene. Oncogene 19, 4405–16.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy, Y., Arbel-Goren, R., Hadari, Y. R., Eshhar, S., Ronen, D., Elhanany, E., Geiger, B. and Zick, Y. (2001) Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem. 276, 31285–95.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2003

Authors and Affiliations

  • Asma Farhat Sherwani
    • 1
  • Sameena Mohmood
    • 1
  • Fauzia Khan
    • 1
  • Rizwan Hasan Khan
    • 2
  • Md. Asim Azfer
    • 1
  1. 1.Department of ZoologyAMUAligarhIndia
  2. 2.Interdisciplinary Biotechnology UnitAMUAligarhIndia

Personalised recommendations