Advertisement

Discriminant analysis

  • M. M. Rao
Article

Keywords

Discriminant Analysis Discriminant Function Unbiased Estimator Discriminant Function Analysis Linear Discriminant Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. W. Anderson,Introduction to Multivariate Statistical Analysis, Wiley, New York, 1958.MATHGoogle Scholar
  2. [2]
    D. Blackwell andM. A. Girshick,Theory of Games and Statistical Decision Functions, Wiley, New York, 1954.Google Scholar
  3. [3]
    J. S. Chipman and M. M. Rao, “On the treatment of linear restrictions in regression analysis,”Econometrica, (1963) (to appear).Google Scholar
  4. [3a]
    J. S. Chipman and M. M. Rao, “Projections, generalized inverses and quadratic forms,”J. Math. Analysis and Appl., (to appear)Google Scholar
  5. [4]
    W. G. Cochran andC. I. Bliss, “Discriminant functions with covariance,”Ann. Math.Stat., Vol. 19 (1948), pp. 151–176.CrossRefMathSciNetGoogle Scholar
  6. [5]
    R. A. Fisher, “Statistical utilization of multiple measurements,”Ann. Eugn. Vol. 8 (1938), pp. 378–386.Google Scholar
  7. [6]
    S. Kullback andH. M. Rosenblatt, “On the analysis of multiple regression ink categories,”Biometrika, Vol. 44 (1957), pp. 67–83.MATHMathSciNetGoogle Scholar
  8. [7]
    Yu. V. Linnik,Method of Least Squares and Principles of the Theory of Observations, (translated by R. C. Elandt), Pergamon Press, London, 1961.MATHGoogle Scholar
  9. [8]
    V. J. Mizel andM. M. Rao, “Nonsymmetric projections in Hilbert space,”Pacific J. Math., Vol. 12 (1962), pp. 343–357.MATHMathSciNetGoogle Scholar
  10. [9]
    M. M. Rao, “A generalization of the discriminant function analysis,”Ann. Math. Stat., Vol. 28 (1957), p. 1062. (Abstract.)Google Scholar
  11. [10]
    S. S. Wilks,Mathematical Statistics, (2nd ed.), Wiley, New York, 1962.MATHGoogle Scholar

Copyright information

© Institute of Statistical Mathematics 1963

Authors and Affiliations

  • M. M. Rao
    • 1
  1. 1.Carnegie Institute of TechnologyUSA

Personalised recommendations