Trabajos de Estadistica

, Volume 5, Issue 1, pp 27–37 | Cite as

Bayesian inference in life tests based on exponential model with outliers when sample size is a random variable

  • G. S. Lingappaiah


This paper deals with the problem of prediction of the order statistics in a future sample. Underlying model is exponential. Outlier is present in the sample drawn and the sample size is considered a random variable. Firstly, an outlier of type πδ in the exponential model, is trated. Actual predictive distribution of the order satstistics is obtained. As an extension, two sample problem is also taken up. Finally, an outlier of type π+δ is dealt and now the predictive distribution is expressed in terms of hypergeometric functions.

Key words

Bayes inference order statistics exponential model outlier variable sample size prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BALAKRISHNAN, N. (1987): «Two identities involving order statistics in the presence of an outlier»,Communications in Statistics-A (Theory and Methods), Vol. 16, pp. 2385–2389.MATHCrossRefGoogle Scholar
  2. [2]
    BARNETT, V., and LEWIS T. (1984):Outliers in Statistical data, Edition II, John Wiley & Sons, New York, N.Y.MATHGoogle Scholar
  3. [3]
    CONSUL, P. C. (1984): «On the distribution of order statistics for a random sample size»,Statistica Neerlandica, Vol. 38, pp. 249–256.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    DUNSMORE, I. R. (1974): «The Bayesian Predictive distribution in Life Testing models»,Technometrics Vol. 16, pp. 455–460.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    ERDELYI, et al. (1954):Higher Transcendental functions, Vol. I, McGraw-Hill Co., N.Y.Google Scholar
  6. [6]
    GUPTA, D., and GUPTA R. C. (1984): «On the Distribution of order statistics for a random sample size»,Statistica Neerlandica, Vol. 38, pp. 13–19.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    KITAGAWA, G. (1984): «Bayesian analysis of outliers via Akaike’s predictive likelihood of a model»,Communications in Statistics-B (Cimulation and computation), Vol. 13, pp. 107–126.MATHCrossRefGoogle Scholar
  8. [8]
    LINGAPPAIAH, G. S. (1973): «Prediction in exponential life testing»,Canadian Journal of Statistics, Vol. 1, pp. 113–117.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    LINGAPPAIAH, G. S. (1974): «Prediction in the samples from the Gamma distribution as applied to life testing»,The Australian Journal of Statistics, Vol. 16, pp. 30–32.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    LINGAPPAIAH, G. S. (1976): «Effect of outliers on the estimation of parameters»,Metrika, Vol. 23 pp. 27–30.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    LINGAPPAIAH, G. S. (1979): «Bayesian approach to the prediction problem in complete and censored samples from the gamma and exponential populations»,Communications in Statistics, Vol. A8, pp. 1403–1424.MathSciNetCrossRefGoogle Scholar
  12. [12]
    LINGAPPAIAH, G. S. (1985a): «A study of shifting models in life tests via Bayesian approach using semi-or-used priors (SOUPS)»,Annals of Institute of Statistical Mathematics, Vol. 37, pp. 151–163.CrossRefMathSciNetGoogle Scholar
  13. [13]
    LINGAPPAIAH, G. S. (1984): «Bayesian prediction regions for the extreme order statistics»,Biometrische Zeitschrift (Biometrical Journal), Vol. 26, pp. 49–56.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    LINGAPPAIAH, G. S. (1985b): «Inferences in samples from the exponential populations when the sample sizes are variables»,METRON, Vol. 43, pp. 175–186.MATHMathSciNetGoogle Scholar
  15. [15]
    LINGAPPAIAH, G. S. (1986): «Prediction problem in samples from a gamma population when sample sizes are random variables; a Bayesian approach»,Journal of Indian Association for Productivity, Quality and Reliability, Vol. 11, pp. 25–34.MathSciNetGoogle Scholar
  16. [16]
    SINHA, S. K. (1973): «Life Testing and Reliability Estimation for Non-homogeneous Data—A Bayesian Approach»,Communications in Statistics, Vol. 2, pp. 235–253.Google Scholar

Copyright information

© Springer 1990

Authors and Affiliations

  • G. S. Lingappaiah
    • 1
  1. 1.Department of Mathematics Sir George Williams CampusConcordia UniversityMontrealCanadá

Personalised recommendations