Solvent effects on intramolecular charge separation

  • Gottfried Köhler
  • Peter Wolschann
  • Krystyna Rotkiewicz
Mechanisms of Photoinduced Electron Transfer—Proceedings of the International Symposium on Molecular Mechanisms of Electron Transfer, Basis of Solar Energy Storage, Cairo, January 1991


Solvent polarity effects on the energetics of charge separation processes, in particular on proton transfer in 1-morpholinomethyl-2-naphthol (M2N), were studied and discussed in the frame of a continuum model. The obtained results were compared to electron transfer (TICT) inp-cyano-N,N-dimethylaniline (CDMA). Solvatochromic shifts of M2N were explained by an increase of the molecular dipole moment on excitation, but more importantly by a rotation of its direction. A minimum in the excited state lifetime in an intermediate polarity region was attributed to a maximum radiationless transition probability.


Solvent effects intramolecular charge separation proton transfer continuum model 


  1. Bachschiev N G 1961Opt. Spektrosc. 10 717Google Scholar
  2. Barltrop J A and Coyle J D 1975Excited states in organic chemistry (London: Wiley)Google Scholar
  3. Bilot L and Kawski A 1962Z. Naturforsch. A17 621Google Scholar
  4. Böttcher C J F 1952Theory of electric polarization (Amsterdam: Elsevier)Google Scholar
  5. Brittinger C, Maiti A K, Baumann W and Detzer N 1990Z. Naturforsch. A45 883, and references cited thereinGoogle Scholar
  6. Calef D F 1988 inPhotoinduced electron transfer (eds) M A Fox and M Chanon (Amsterdam: Elsevier)Google Scholar
  7. Grabowski Z R, Rotkiewicz K, Siemiarczuk A, Cowley D J and Baumann W 1979Nouv. J. Chim. 3 443Google Scholar
  8. Heitele H, Pöllinger F, Weeren S and Michel-Beyerle M E 1990Chem. Phys. 143 325, and references cited thereinCrossRefGoogle Scholar
  9. Karelson M M, Katriztky A R, Szafran M and Zerner M C 1990J. Chem. Soc., Perkin Trans. II 195Google Scholar
  10. Köhler G and Rotkiewicz K 1986Spectrochim. Acta A42 1127CrossRefGoogle Scholar
  11. Köhler G and Wolschann P 1987J. Chem. Soc., Faraday Trans. II 83 513CrossRefGoogle Scholar
  12. Köhler G and Wolschann P 1992 (to be published)Google Scholar
  13. Kosower E M and Huppert D 1986Annu. Rev. Phys. Chem. 37 127CrossRefGoogle Scholar
  14. Lippert E, Lüder W and Boos H 1962 inAdvances in molecular spectroscopy (ed.) A Mangini (Oxford: Pergamon) p. 443Google Scholar
  15. Liptay W 1965Z. Naturforsch. A20 1441Google Scholar
  16. Mordzinski A and Grabowska A 1982Chem. Phys. Lett. 90 123CrossRefGoogle Scholar
  17. Nag A, Kundu T and Bhattacharya K 1989Chem. Phys. Lett. 160 257CrossRefGoogle Scholar
  18. Nicol M F 1974Appl. Spectrosc. Rev. 8 183CrossRefGoogle Scholar
  19. Rosetti R, Haddon R C and Brus L E 1980J. Am. Chem. Soc. 102 6913CrossRefGoogle Scholar
  20. Rotkiewicz K and Köhler G 1987J. Lumin. 37 219CrossRefGoogle Scholar
  21. Schuster P, Wolschann P and Tortschanoff K 1977 inChemical relaxation in molecular biology, biochemistry and biophysics (eds) I Pecht and R Rigler (Berlin, Heidelberg, New York: Springer-Verlag) vol. 24Google Scholar
  22. Suppan P 1985J. Lumin. 33 29CrossRefGoogle Scholar
  23. Suppan P 1990J. Photochem. Photobiol. A50 293CrossRefGoogle Scholar
  24. Van der Donckt E and Porter G 1968Trans. Faraday Soc. 64 3215CrossRefGoogle Scholar
  25. Vollmer F and Rettig W 1981 Referate band der 11. Vortragstagung GDCh, University Duisburg, p. 80Google Scholar
  26. Weller A 1952Z. Elektrochem. 56 662Google Scholar
  27. Weast R C 1981Handbook of chemistry and physics (Boca Raton: CRC Press)Google Scholar

Copyright information

© Indian Academy of Sciences 1992

Authors and Affiliations

  • Gottfried Köhler
    • 1
  • Peter Wolschann
    • 1
  • Krystyna Rotkiewicz
    • 2
  1. 1.Institut für Theoretische Chemie und StrahlenchemieUniversity of ViennaWienAustria
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations