Advertisement

Solvent effects on intramolecular charge separation

  • Gottfried Köhler
  • Peter Wolschann
  • Krystyna Rotkiewicz
Mechanisms of Photoinduced Electron Transfer—Proceedings of the International Symposium on Molecular Mechanisms of Electron Transfer, Basis of Solar Energy Storage, Cairo, January 1991
  • 72 Downloads

Abstract

Solvent polarity effects on the energetics of charge separation processes, in particular on proton transfer in 1-morpholinomethyl-2-naphthol (M2N), were studied and discussed in the frame of a continuum model. The obtained results were compared to electron transfer (TICT) inp-cyano-N,N-dimethylaniline (CDMA). Solvatochromic shifts of M2N were explained by an increase of the molecular dipole moment on excitation, but more importantly by a rotation of its direction. A minimum in the excited state lifetime in an intermediate polarity region was attributed to a maximum radiationless transition probability.

Keywords

Solvent effects intramolecular charge separation proton transfer continuum model 

References

  1. Bachschiev N G 1961Opt. Spektrosc. 10 717Google Scholar
  2. Barltrop J A and Coyle J D 1975Excited states in organic chemistry (London: Wiley)Google Scholar
  3. Bilot L and Kawski A 1962Z. Naturforsch. A17 621Google Scholar
  4. Böttcher C J F 1952Theory of electric polarization (Amsterdam: Elsevier)Google Scholar
  5. Brittinger C, Maiti A K, Baumann W and Detzer N 1990Z. Naturforsch. A45 883, and references cited thereinGoogle Scholar
  6. Calef D F 1988 inPhotoinduced electron transfer (eds) M A Fox and M Chanon (Amsterdam: Elsevier)Google Scholar
  7. Grabowski Z R, Rotkiewicz K, Siemiarczuk A, Cowley D J and Baumann W 1979Nouv. J. Chim. 3 443Google Scholar
  8. Heitele H, Pöllinger F, Weeren S and Michel-Beyerle M E 1990Chem. Phys. 143 325, and references cited thereinCrossRefGoogle Scholar
  9. Karelson M M, Katriztky A R, Szafran M and Zerner M C 1990J. Chem. Soc., Perkin Trans. II 195Google Scholar
  10. Köhler G and Rotkiewicz K 1986Spectrochim. Acta A42 1127CrossRefGoogle Scholar
  11. Köhler G and Wolschann P 1987J. Chem. Soc., Faraday Trans. II 83 513CrossRefGoogle Scholar
  12. Köhler G and Wolschann P 1992 (to be published)Google Scholar
  13. Kosower E M and Huppert D 1986Annu. Rev. Phys. Chem. 37 127CrossRefGoogle Scholar
  14. Lippert E, Lüder W and Boos H 1962 inAdvances in molecular spectroscopy (ed.) A Mangini (Oxford: Pergamon) p. 443Google Scholar
  15. Liptay W 1965Z. Naturforsch. A20 1441Google Scholar
  16. Mordzinski A and Grabowska A 1982Chem. Phys. Lett. 90 123CrossRefGoogle Scholar
  17. Nag A, Kundu T and Bhattacharya K 1989Chem. Phys. Lett. 160 257CrossRefGoogle Scholar
  18. Nicol M F 1974Appl. Spectrosc. Rev. 8 183CrossRefGoogle Scholar
  19. Rosetti R, Haddon R C and Brus L E 1980J. Am. Chem. Soc. 102 6913CrossRefGoogle Scholar
  20. Rotkiewicz K and Köhler G 1987J. Lumin. 37 219CrossRefGoogle Scholar
  21. Schuster P, Wolschann P and Tortschanoff K 1977 inChemical relaxation in molecular biology, biochemistry and biophysics (eds) I Pecht and R Rigler (Berlin, Heidelberg, New York: Springer-Verlag) vol. 24Google Scholar
  22. Suppan P 1985J. Lumin. 33 29CrossRefGoogle Scholar
  23. Suppan P 1990J. Photochem. Photobiol. A50 293CrossRefGoogle Scholar
  24. Van der Donckt E and Porter G 1968Trans. Faraday Soc. 64 3215CrossRefGoogle Scholar
  25. Vollmer F and Rettig W 1981 Referate band der 11. Vortragstagung GDCh, University Duisburg, p. 80Google Scholar
  26. Weller A 1952Z. Elektrochem. 56 662Google Scholar
  27. Weast R C 1981Handbook of chemistry and physics (Boca Raton: CRC Press)Google Scholar

Copyright information

© Indian Academy of Sciences 1992

Authors and Affiliations

  • Gottfried Köhler
    • 1
  • Peter Wolschann
    • 1
  • Krystyna Rotkiewicz
    • 2
  1. 1.Institut für Theoretische Chemie und StrahlenchemieUniversity of ViennaWienAustria
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations