Role of orbital symmetry in transition metal promoted ring opening reactions of methylenecyclopropanes and cyclobutenes

  • Ashoka G. Samuelson
Inorganic Chemistry


Transition metals catalyse a variety of organic reactions, of which the ring opening of strained ring organic molecules generated a lot of interest. Theoreticians predicted a metal orbital catalysed pathway, which involved concerted bond breaking and bond forming. On the other hand experimentalists were able to show that the reaction was not proceeding through a concerted pathway by intercepting the intermediates involved. There remained, however, two ring systems methylenecyclopropanes and cyclobutenes—whose reactions with metal complexes seemed to be of a concerted nature. An analysis of the reactions of different metal complexes with these ring systems and the theoretical predictions provide a rationale for understanding these reactions.


Metal orbital catalysis methylenecyclopropanes cyclobutenes ring opening reactions orbital symmetry transition metal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes S G and Green M 1980J. Chem. Soc. Chem. Commun. 267Google Scholar
  2. Billups W E, Lin L P and Baker B A 1972Angew. Chem. Int. Ed. Engl. 11 637CrossRefGoogle Scholar
  3. Cassar L and Halpern J 1971J. Chem. Soc. Chem. Commun. 1082Google Scholar
  4. Dewar M J S 1971Angew. Chem. Int. Ed. Engl. 10 761CrossRefGoogle Scholar
  5. Fukui K and Inagaki S 1975J. Am. Chem. Soc. 97 4445CrossRefGoogle Scholar
  6. Gassman P G and Reitz R R 1973J. Organometal. Chem. 152 C51CrossRefGoogle Scholar
  7. Graham C R, Scholes G and Brookhart M S 1977J. Am. Chem. Soc. 99 1180CrossRefGoogle Scholar
  8. Green M and Hughes R P 1976J. Chem. Soc. Dalton Trans. 1890Google Scholar
  9. Grimme W and Schneider E 1977Angew. Chem. Int. Ed. Engl. 16 717CrossRefGoogle Scholar
  10. Hughes R P, Hunton D E and Schumann K 1979J. Organometal. Chem. 169 C37CrossRefGoogle Scholar
  11. Mango F D and Schachtschneider 1965J. Am. Chem. Soc. 87 2045CrossRefGoogle Scholar
  12. Mango F D and Schachtschneider 1971J. Am. Chem. Soc. 93 1123CrossRefGoogle Scholar
  13. Noyori R and Takaya H 1969J. Chem. Soc. Chem. Commun. 525 Google Scholar
  14. Noyori R Nishimura T and Takaya H 1969J. Chem. Soc. Chem. Commun. 89Google Scholar
  15. Pearson R G 1976Chem. Br. 12 60Google Scholar
  16. Pettit R, Sugahara H, Wristers J and Merck W 1969Disc. Farad. Soc. 47 71CrossRefGoogle Scholar
  17. Pinhas A R 1980 Ph.D Dissertation, Cornell UniversityGoogle Scholar
  18. Pinhas A R and Carpenter B K 1980aJ. Chem. Soc. Chem. Commun. 15Google Scholar
  19. Pinhas A R and Carpenter B K 1980bJ. Chem. Soc. Chem. Commun. 17Google Scholar
  20. Pinhas A R, Samuelson A G, Risemberd R, Arnold E. V., Clardy J and Carpenter B K 1981J. Am. Chem. Soc. 103 1168CrossRefGoogle Scholar
  21. Samuelson A G 1983 Ph.D Dissertation, Cornell UniversityGoogle Scholar
  22. Samuelson A G and Carpenter B K 1981J. Chem. Soc. Chem. Commun. 354Google Scholar
  23. Scholes G, Graham C R and Brookhart M S 1974J. Am. Chem. Soc. 96 5665CrossRefGoogle Scholar
  24. Shvo and Hazum E 1975J. Chem. Soc. Chem. Commun. 829Google Scholar
  25. Skell P S and Sandier S R 1958J. Am. Chem. Soc. 80 2024CrossRefGoogle Scholar
  26. Slegir W, Case R, Mc Kennis J S and Pettit R 1974J. Am. Chem. Soc. 96 287CrossRefGoogle Scholar
  27. Whitesides T H, Slaven R W and Calabrese J C 1974Inorg. Chem. 13 1895CrossRefGoogle Scholar
  28. Woodward R B and Hoffman R 1971Conservation of orbital symmetry (Verlog Chemie)Google Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • Ashoka G. Samuelson
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations