Chemical modelling of photosynthesis: Intramolecular quinone-porphyrin complexes

  • K. N. Ganesh
Organic Chemistry


The strategies for the synthesis of covalently linked, flexible and rigid quinoneporphyrin complexes are described. Several anomalous chemical reactivities were observed in the quinone-capped porphyrins which may be attributed to the proximity of quinone and porphyrin moieties. Previous investigations by1Hnmr spectroscopy have demonstrated that the metal ion in capped metalloporphyrins is 5 co-ordinate, bound intramolecularly to quinone carbonyls and can accept a sixth ligand from the unhindered side. Here, additional evidence from13CNMR spectroscopy is presented to support the intramolecular co-ordination of the quinone and establish the cooperativity in binding of an external ligand; this process involves the movement of the metal ion into the porphyrin plane, pulling the quinone chromophore closer to the porphyrin. Electrochemical results reveal that the quinone in capped metalloporphyrins are better electron acceptors than simple quinones. The intramolecular quinone-porphyrin complexes promise to be potential model compounds to demonstrate the primary photosynthetic eventin vitro.


Photosynthetic modelling quinone-porphyrin complexes 


  1. Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assaur J and Kosakoff L 1967J. Org. Chem. 32 476CrossRefGoogle Scholar
  2. Baldwin J E, Crossley M J, Debernaids J F, Dyer R L, Huff J R and Peters M K 1981Tetrahedron 37 3589CrossRefGoogle Scholar
  3. Bergkamp M A, Dalton J and Netzel T L 1982J. Am. Chem. Soc. 104 253CrossRefGoogle Scholar
  4. Bogatskii A V and Zhilana Z I 1982Russ. Chem. Rev. 51 592CrossRefGoogle Scholar
  5. Buchler J H 1975 inPorphyrins and metalloporphyrins (ed.) K M Smith (Amsterdam: Elsevier)Google Scholar
  6. Cruse W B, Kennard O, Sheldrick G M, Hamilton A D, Hartley S G and Battersby A R 1980J. Chem. Soc. Chem. Commun. 700Google Scholar
  7. Dalton J and Milogram L R 1979J. Chem. Soc. Chem. Commun. 609Google Scholar
  8. Ganesh K N and Sanders J K M 1980J. Chem. Soc. Chem. Commun. 1129Google Scholar
  9. Ganesh K N and Sanders J K M 1982J. Chem. Soc. Perkin Trans. I 1611Google Scholar
  10. Ganesh K N, Sanders J K M and Waterton J C 1982J. Chem. Soc. Perkin Trans I 1617Google Scholar
  11. Ho T, Mclntosh A R and Bolton J R 1980Nature (London) 286 254CrossRefGoogle Scholar
  12. Kong JLY and Loach P A 1980J. Heterocyclic Chem. 17 737CrossRefGoogle Scholar
  13. Nishitani E, Kurato N, Sakata Y, Misumi S, Migita M, Okada T and Mataga N 1981Tet. Lett. 2099Google Scholar
  14. Storm C B and Corwin A H 1964J. Org. Chem. 29 3700CrossRefGoogle Scholar
  15. Tabushi I, Koga N and Yanagita M 1979Tet. Lett. 257Google Scholar

Note added in proof

  1. Nishitani S, Kurata N, Sakata Y and Misumi S 1983J. Am. Chem. Soc. 105 7771CrossRefGoogle Scholar
  2. Moore T Aet at 1984Nature (London) 307 630CrossRefGoogle Scholar
  3. Lindsey J S and Mauzerall D C 1982J. Am. Chem. Soc. 104 4498CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • K. N. Ganesh
    • 1
  1. 1.Centre for Cellular and Molecular BiologyHyderabadIndia

Personalised recommendations