American Potato Journal

, Volume 43, Issue 4, pp 112–121 | Cite as

Localization and activity of phenolase in the potato tuber

  • C. C. Craft


Phenolase was found in all subcellular fractions of the potato tuber roughly in proportion to the protein content of each fraction. Approximately 75% of the total phenolase activity was found in the supernatant after high speed (90,000 x g) centrifugation. Less than 5% of the total activity was associated with the particulate fraction sedimented at either 12,000 x g or 90,000 x g. The phenolase enzyme associated with the particulates sedimented at either 12,000 x g or 90,000 x g was progressively removed by successive washings indicating that the enzyme was only loosely associated with and not a fixed part of the particulates. The phenolase associated with the cell-wall residue and cell debris (sedimented at 600 x g) showed only a small fraction of the total activity. This residue-bound enzyme was very resistant to successive washings. Little or no phenolase was located on the surface of potato cells. The catecholase/cresolase ratios, substrate specificities, and Michaelis constants of the phenolase enzyme associated with each of the different fractions were of the same order of magnitude. The differences found were insufficient to conclude that the phenolase enzymes associated with the different fractions were dissimilar.


Catechol Potato Tuber AMERICAN Potato Journal Chlorogenic Acid Crude Homogenate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La fenolasa fue encontrada en todas las fracciones subcelulares del tubérculo de la papa, a groso modo en proporción al contenido protéico de cada fracción.. Aproximadamente en 75% del total de actividad de la fenolasa, fue encontrado en la suspención, después del centrifugado a alta velocidad (90,000 x g). Menos del 5% de la actividad total fue asociada con la fracción peculiar sedimentada a 12,000 x g ó 90,000 x g. La enzima fenolasa, asociada con el sedimento peculiar, a 12,000 x g ó 90,000 x g, fue removida regresivanente, por lavados sucesivos, indicando que la enzima solamente fue ligeramente asociada y no una parte fija del peculiar. La fenolasa asociada con los residuos de las células de las paredes y deshechos de células (sedimenta a 600 x g), mostraron sólo una pequeña fracción de la actividad total. Este eslabón de residuo enzimático, fue muy resistente a los lavados sucesivos. Poca o nada de fenolasa fue localizada en la supreficie de las células de la papa. Los radios de catecolasa/cresolasa, especificidades del substrato y constantes de Michaelis de la enzima fenolasa, asociada con cada una de las fracciones diferentes, fueron del mismo orden de magnitud. Las diferencias encontradas fueron insuficientes para concluir que la enzima fenolasa, asociada con las fracciones diferentes, fueron disimilares.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Bodine, J. H. and D. L. Hill. 1945. The action of synthetic detergents on protyrosinase. Arch. Biochem. 7: 21–32.Google Scholar
  2. 2.
    Bonner, W. D. 1957. Soluble oxidases and their function. Ann. Rev. Plant Physiol. 8: 427–452.CrossRefGoogle Scholar
  3. 3.
    Cantino, E. C. and E. A. Horenstein. 1955. The role of ketoglutarate and polyphenol oxidase in the synthesis of melanin during morphogensis in Blastocladiella emersonii. Physiol. Plant. 8: 189–221.CrossRefGoogle Scholar
  4. 4.
    Geissman, T. A. 1958. The metabollism of phenylypropane derivatives in plants. Encyclopedia of Plant Physiol. X: 543–559.Google Scholar
  5. 5.
    Goddard, D. R. and C. Holden. 1958. Cytochrome oxidase in the potato tuber. Arch. Biochem. 27: 41–47.Google Scholar
  6. 6.
    Gornall, A. G., C. J. Bardawill and M. M. David. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177: 751–766.PubMedGoogle Scholar
  7. 7.
    Hackett, D. P., D. W. Haas, K. Griffiths and D. J. Niederpruem. 1960. Studies on development of cyanide-resistant respiration in potato tuber slices. Plant Physiol. 35: 8–19.PubMedGoogle Scholar
  8. 8.
    Harel, E., A. M. Mayer and Y. Shain. 1964. Catechol oxidases from apples, their properties, subcellular location and inhibition. Physiol. Plant. 17: 921–930.CrossRefGoogle Scholar
  9. 9.
    Haskins, F. A. 1955. Changes in the activities of several enzymes during germination and seedling development in corn (Zea Mays L.). Plant Physiol. 30: 74–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Higuchi, T. 1957. Biochemical studies of lignin formation. I. Physiol. Plant. 10: 356–372.CrossRefGoogle Scholar
  11. 11.
    Kenten, R. H. 1958. Latent phenolase in extracts of broadbean (Vicia faba L.) leaves. 2. Activation by anionic wetting agents. Biochem. J. 68: 244–251.PubMedGoogle Scholar
  12. 12.
    Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J Amer. Chem. Soc. 56: 658–666.CrossRefGoogle Scholar
  13. 13.
    Mallete, M. F. 1950. The nature of the copper enzymes involved in tyrosine oxidation. In McElroy, W. D. and B. Glass (ed.). A symposium on copper metabolism. Johns Hopkin Press, Baltimore, Md. 443 p.Google Scholar
  14. 14.
    Mason, H. S. 1956. Structure and function of the phenolase complpex. Nature 177: 79–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Mason, H. S. 1955. Comparative biochemistry of the phenolase complex. Advances in Enzymol. 16: 105–184.Google Scholar
  16. 16.
    Nelson, J. M. and C. R. Dawson. 1944. Tyrosinase. Advances in Enzymol. 4: 99–152.Google Scholar
  17. 17.
    Ponting, J. D. and M. A. Joslyn. 1948. Ascorbic acid oxidation and browning in apple tissue extracts. Arch. Biochem. 19: 47–63.PubMedGoogle Scholar
  18. 18.
    Smith, J. L. and R. C. Krueger. 1962. Separation and purification of the phenolases of the common mushroom. J. Biol. Chem. 237: 1121–1128.PubMedGoogle Scholar
  19. 19.
    Szent-Gyorgyi, A. and K. Vietorisz. 1931. Bemerkungen uber die Funktion und Bedeutung der Polyphenoloxydase der Kartoffeln. Biochem. Z. 233: 236–239.Google Scholar

Copyright information

© Springer 1966

Authors and Affiliations

  • C. C. Craft
    • 1
  1. 1.Agricultural Research ServiceU. S. Department of AgriculturePomona

Personalised recommendations