Skip to main content
Log in

The chemical mechanism of photosynthesis

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

The process of photosynthesis is considered as an oxidation-reduction reaction activated by light absorbed by chlorophyll or certain other substances (e.g., phycocyanin, fucoxanthol), resulting in the evolution of oxygen from water and in the formation of reduced carbon compounds (e.g., carbohydrate) from carbon dioxide. The organisation of the reaction in the cell is not yet understood-the poor photosynthetic activity of light absorbed by chlorophyll in certain red algae may be indicative of a change in this organisation. When chloroplasts are isolated from the cell they are able to catalyse the photochemical reduction of certain hydrogen acceptors with evolution of oxygen from water, but they are unable to reduce carbon dioxide. Analysis of the path of carbon in the green plant cell, both in the light and in the dark, has been made possible by the use of radioactive carbon dioxide. A large number of intermediates in the metabolism of the cell have been identified, but as yet convincing evidence regarding the specific part played by any of these compounds in a particular metabolic process is lacking. The metabolic system of the cell may be analysed in terms of a number of separate processes, but it seems probable that these may have many steps in common. The reactions which must be unique to photosynthesis are those reactions involving at most two light quanta per hydrogen atom transferred which result in the formation of a hydrogen donor capable of reducing carbon dioxide. Comparative studies of the rate of photosynthesis and of the rate of individual steps, as represented for example by the chloroplast reaction and by tracer studies, present the most promising approach to the physiology of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Allen, M. B., Guest, B. H. andKamen, M. 1947. Differential inhibition of respiration and dark carbon dioxide fixation inScenedesmus andChlorella. Archiv. Biochem.14: 335.

    CAS  Google Scholar 

  • Arnold, W. 1949. A calorimetric determination of the quantum yield in photosynthesis.In Franck, J. and Loomis, W., “Photosynthesis in Plants”, Chap. 13.

  • — andOppenheimer, H. J. 1950. Internal conversion in the photosynthetic mechanism of blue green algae. Jour. Gen. Physiol.33: 423.

    Article  CAS  Google Scholar 

  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant Physiol.24: 1.

    PubMed  CAS  Google Scholar 

  • —. 1951. Extracellular photosynthetic reactions. Nature167: 1008.

    Article  PubMed  CAS  Google Scholar 

  • — andWhatley, F. R. 1949a. Is chloride a coenzyme of photosynthesis ? Science110: 554.

    Article  PubMed  CAS  Google Scholar 

  • —— 1949b. Factors influencing oxygen production by illuminated chloroplast fragments. Archiv. Biochem.23: 141.

    CAS  Google Scholar 

  • Aronoff, S. 1946. Photochemical reduction of chloroplast grana. Plant Physiol.21: 393.

    PubMed  CAS  Google Scholar 

  • — andVernon, L. 1950. Metabolism of soy bean leaves. I. The sequence of formation of the soluble carbohydrates. Archiv. Biochem.28: 424.

    CAS  Google Scholar 

  • Audus, L. J. 1947. The effects of illumination on the respiration of shoots of the cherry laurel. Ann. Bot.11: 165.

    CAS  Google Scholar 

  • Aufdemgarten, H. 1939. Zur Kenntnis der Sogenannten Induktionsvorgänge bei der Kohlensäureassimilation. Planta29: 643.

    Article  CAS  Google Scholar 

  • Barker, H. A. [Unpub., quoted by Van Niel in 1949].

  • Bassham, J. A., Benson, A. A. andCalvin, M. 1950. The path of carbon in photosynthesis. VIII. The role of malic acid. Jour. Biol. Chem.185: 781.

    CAS  Google Scholar 

  • Benson, A. A., Bassham, J. A., Calvin, M., Goodale, T. C., Kaas, V. A. andStepka, W. 1950a. The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. Jour. Am. Chem. Soc.72: 1710.

    Article  CAS  Google Scholar 

  • — andCalvin, M. 1950b. The path of carbon in photosynthesis. VII. Respiration and photosynthesis. Jour. Exp. Bot.1: 63.

    Article  Google Scholar 

  • —. 1951. Jour. Am. Chem. Soc.73: 2973.

    Article  Google Scholar 

  • Blackman, F. F. 1905. Optima and limiting factors. Ann. Bot.19: 281.

    Google Scholar 

  • Blinks, L. R. andYocum, C. S. [Unpub.]

  • Boichenko, E. A. 1943. Conditions necessary for the activity of chloroplasts outside the cell. Compt. Rend. Akad. Sci. U.R.S.S.38: 181.

    CAS  Google Scholar 

  • —. 1944. Catalysts of activity of isolated chloroplasts. Compt. Rend. Akad. Sci. U.R.S.S.42: 345.

    CAS  Google Scholar 

  • Boyle, F. P. 1948. Some factors involved in oxygen from triturated spinach leaves. Science108: 359.

    Article  PubMed  CAS  Google Scholar 

  • Bradfield, J. R. G. 1947. Plant carbonic anhydrase. Nature159: 467.

    Article  CAS  Google Scholar 

  • Briggs, G. E. 1929. The energetic efficiency of photosynthesis in green plants. Proc. Royal Soc. (London) B105: 1.

    CAS  Google Scholar 

  • —. 1935. Photosynthesis in intermittent light in relation to current formulations of the principles of the photosynthetic mechanism. Biol. Rev. Cambridge Phil. Soc.10: 460.

    Article  CAS  Google Scholar 

  • -. 1949. [Private communication].

  • Brown, A. H. andFranck, J. 1948. On the participation of carbon dioxide in the photosynthetic activity of illuminated chloroplasts. Archiv. Biochem.16: 55.

    CAS  Google Scholar 

  • -,Fager, E. W. andGaffron, H. 1949. Kinetics of photochemical intermediates in photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 20.

  • Burk, D. andWarburg, O. Ein Quantenreaktion und Kreisprozess der Energie bei der Photosynthese. 1950. Naturwiss.37: 560; 1951. Zeit. Naturforsch.6b: 12.

    Article  Google Scholar 

  • Buy, H. G. Du, Woods, M. W. andLackey, M. D. 1950. Enzymatic activities of isolated normal and mutant mitochondria and plastids of higher plants. Science111: 572.

    Article  Google Scholar 

  • Calvin, M. 1949. The path of carbon in photosynthesis. Jour. Chem. Ed.26: 639.

    Article  CAS  Google Scholar 

  • -,Bassham, J. A., Benson, A. A., Lynch, V. H., Ouellet, C., Schou, L., Stepka, W., andTolbert, N. E. 1951. Carbon dioxide assimilation in plants. Soc. Exp. Biol., Symposium No. 5. Carbon Dioxide Fixation and Photosynthesis, p. 284.

  • Clendenning, K. A. 1950. Distribution of tracer carbon among the lipids of the algaScenedesmns during brief photosynthetic exposures. Archiv. Biochem.27: 75.

    CAS  Google Scholar 

  • — andEhrmantraut, H. 1950. Photosynthesis and Hill reactions by wholeChlorella cells in continuous and flashing light. Archiv. Biochem.29: 387.

    CAS  Google Scholar 

  • — andGorham, P. R. 1950. Dark reactions and photochemical activity of isolated chloroplasts in relation to their source and previous history. I, II, III. Can. Jour. Res.28: 78, 102, 114.

    Google Scholar 

  • Conn, E., Vennesland, B. andKraemer, L. M. 1949. Distribution of a TPN specific enzyme catalyzing the reversible oxidation decarboxylation of malic acid in higher plants. Archiv. Biochem.23: 179.

    CAS  Google Scholar 

  • Davenport, H. E. andHill, R. 1951. The preparation and some properties of cytochrome f. Proc. Royal Soc. (London). [In press].

  • Davis, E. A. 1950. Likelihood of photorespiration or light inhibited respiration in green plants. Science112: 113.

    Article  PubMed  CAS  Google Scholar 

  • Day, R. andFranklin, J. 1946. Isotopic composition of photosynthetic oxygen. Science100: 363.

    Article  Google Scholar 

  • Dole, M. andJenks, G. 1944. Istopic composition of photosynthetic oxygen. Science100: 409.

    Article  PubMed  CAS  Google Scholar 

  • Ducet, G. andRosenberg, A. J. 1951. Activité respiratoire chez les végétaux superieurs. II. Activité cytochrome oxydasique et polyphenoloxydasique. Bull. Soc. Chim. Biol.33: 321.

    PubMed  CAS  Google Scholar 

  • Dutton, H. J. andManning, W. M. 1941. Evidence for carotenoidsensitized photosynthesis in the diatomNitschia closterium. Am. Jour. Bot.28: 516.

    Article  CAS  Google Scholar 

  • —— andDuggar, B. M. 1943. Chlorophyll fluorescence and energy transfer in the diatomNitschia closterium. Jour. Phys. Chem.47: 308.

    Article  CAS  Google Scholar 

  • Duysens, L. N. M. 1951. Transfer of light energy within the pigment system present in photosynthesizing cells. Nature168: 548.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, R. andArnold, W. 1932. A separation of the reactions in photosynthesis by means of intermittent light. Jour. Gen. Physiol.15: 391.

    Article  CAS  Google Scholar 

  • — andLewis, C. M. 1939. Factors influencing the efficiency of photosynthesis. Am. Jour. Bot.20: 808.

    Article  Google Scholar 

  • — andLewis, C. M. 1942. The photosynthetic efficiency of phycocyanin inChroococcus. Jour. Gen. Physiol.25: 579.

    Article  CAS  Google Scholar 

  • — andLewis, C. M. 1943. The dependence of the quantum yield ofChlorella photosynthesis on wavelengths of light. Am. Jour. Bot.30: 165.

    Article  CAS  Google Scholar 

  • - andNishimura, M. S. 1949. The quantum requirement of photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 10.

  • Emerson, R. L., Stauffer, J. F. andUmbreit, W. W. 1944. Relationships between phosphorylation and photosynthesis inChlorella. Am. Jour. Bot.31: 107.

    Article  CAS  Google Scholar 

  • Eyster, H. C. 1950. Catalase activity in chloroplast pigment deficient types of corn. Plant Physiol.25: 630.

    PubMed  CAS  Google Scholar 

  • Fan, C. S., Stauffer, J. F. andUmbreit, W. W. 1943. An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis byChlorella. Jour. Gen. Physiol.27: 15.

    Article  CAS  Google Scholar 

  • Fager, E. W., Rosenberg, J. L. andGaffron, H. 1950. Intermediates in photosynthesis. Fed. Proc.9: 535.

    PubMed  CAS  Google Scholar 

  • Franck, J. 1949a. The relation of the fluorescence of chlorophyll to photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 16.

  • —. 1949b. An interpretation of the contradictory results in measurements of the photosynthetic yield and related phenomena. Archiv. Biochem.23: 297.

    CAS  Google Scholar 

  • —. 1951. A critical survey of the physical background of photosynthesis. Ann. Rev. Plant Physiol.2: 53.

    Article  CAS  Google Scholar 

  • — andFrench, C. S. 1941. Photoxidation processes in plants. Jour. Gen. Physiol.25: 309.

    Article  CAS  Google Scholar 

  • — andPuck, T. T. 1941. The fluorescence of chlorophyll and photosynthesis. Jour. Physiol. Chem.45: 1268.

    Article  CAS  Google Scholar 

  • — andHerzfeld, K. F. 1941. Contribution to a theory of photosynthesis. Jour. Physiol. Chem.45: 978.

    Article  CAS  Google Scholar 

  • French, C. S., Holt, A. S., Powell, R. D. andAnson, M. L. 1946. The evolution of oxygen from illuminated suspensions of frozen, dried and homogenized chloroplasts. Science103: 505.

    Article  PubMed  CAS  Google Scholar 

  • — andRabideau, G. S. 1945. The quantum yield of oxygen production by chloroplasts suspended in solutions containing ferric oxalate. Jour. Gen. Physiol.28: 329.

    Article  CAS  Google Scholar 

  • Frenkel, A. W. 1941. Photosynthesis with radio-active carbon and the distribution of the intermediate products in the plant cell. Plant Physiol.16: 654.

    Article  PubMed  CAS  Google Scholar 

  • Gabrielson, E. K. 1940. Einfluss der Lichtfaktoren auf die Kohlensäureassimilation der Laubblätter. Dansk. Bot. Arkiv.10: 1.

    Google Scholar 

  • Gaffron, H. 1944. Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev., Cambridge Phil. Soc.19: 1.

    Article  CAS  Google Scholar 

  • — andFager, E. W. 1951. The kinetics and chemistry of photosynthesis. Ann. Rev. Plant Physiol.2: 87.

    Article  CAS  Google Scholar 

  • Haxo, F. T. andBlinks, L. R. 1950. Photosynthetic action spectra of marine algae. Jour. Gen. Physiol.33: 389.

    Article  CAS  Google Scholar 

  • Hill, R., Davenport, H. E. andWhatley, F. R. 1951. A natural factor catalysing reduction of methaemoglobin by isolated chloroplasts. Proc. Royal Soc. (London) [In press].

  • — andScarisbrick, R. 1940. Production of oxygen by illuminated chloroplasts. Nature146: 61.

    Article  CAS  Google Scholar 

  • ——. 1940. The reduction of ferric oxalate by isolated chloroplasts. Proc. Royal Soc. (London) B129: 238.

    CAS  Google Scholar 

  • Holt, A. S. andFrench, C. S. 1946. The photochemical production of oxygen and hydrogen ion by isolated chloroplasts. Archiv. Biochem.9: 25.

    CAS  Google Scholar 

  • ——. 1948a. Isotopic analysis of the oxygen evolved by illuminated chloroplasts. Archiv. Biochem.19: 429.

    CAS  Google Scholar 

  • ——. 1948b. Oxygen production by illuminated chloroplasts suspended in solutions of oxidants. Archiv. Biochem.19: 368.

    CAS  Google Scholar 

  • ——,Smith, R. F. andFrench, C. S. 1951. Dye reduction by illuminated chloroplasts. Plant Physiol.26: 164.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, F. H., Eyring, H., Steblay, R., Chaplin, H., Huber, C., andGherardi, G. 1945. The nature and control of reactions in bioluminescence. Jour. Gen. Physiol.28: 463.

    Article  Google Scholar 

  • Kamen, M. D. 1949. Some remarks on tracer researches in photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 18.

  • — 1950. Hydrogenase activity and photoassimilation. Fed. Proc.9: 543.

    PubMed  CAS  Google Scholar 

  • — andBarker, H. A. 1945. Inadequacies in present knowledge of the relation between photosynthesis and O18 content of atmosphere. Proc. Nat. Acad. Sci.31: 8.

    Article  PubMed  CAS  Google Scholar 

  • Kok, B. 1948. A critical consideration of the quantum yield ofChlorella photosynthesis. Enzymologia13: 1.

    CAS  Google Scholar 

  • Kumm, J. andFrench, C. S. 1945. The evolution of oxygen from suspensions of chloroplasts. Am. Jour. Bot.32: 291.

    Article  CAS  Google Scholar 

  • Livingston, R. 1949. The photochemistry of chlorophyll.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 7.

  • Macdowall, F. D. H. 1949. The effect of some inhibitors of photosynthesis upon the photochemical reduction of a dye by isolated chloroplasts. Plant Physiol.24: 462.

    PubMed  CAS  Google Scholar 

  • McAlister, E. D. 1939. The chlorophyll carbon dioxide ratio in photosynthesis. Jour. Gen. Physiol.22: 613.

    Article  CAS  Google Scholar 

  • - andMyers, J. 1940. The time course of photosynthesis and fluorescence observed simultaneously. Smithsonian Inst. Pub., Misc. Coll.99(6).

  • Mehler, A. H. 1951. Studies on reactions of illuminated chloroplasts. Archiv. Biochem.33: 65.

    Article  CAS  Google Scholar 

  • Milner, H. W., French, C. S., Koenig, M. L. G. andLawrence, N. S. 1950a. Measurement and stabilization of activity of chloroplast material. Archiv. Biochem.28: 193.

    CAS  Google Scholar 

  • —,Lawrence, N. S. andFrench, C. S. 1950b. Colloidal dispersion of chloroplast material. Science111: 633.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W. E. andDuggar, B. M. 1949. Quantum efficiency of photosynthesis inChlorella. In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 11.

  • Neish, A. C. 1939. Studies on chloroplasts. Biochem. Jour.33: 300.

    CAS  Google Scholar 

  • Nier, A. O. 1950. [In Science Today7: 158 as reported in Nature166: 756].

    Google Scholar 

  • Nishimura, M. S., Whittingham, C. P. andEmerson, R. 1951. The maximum efficiency of photosynthesis. Soc. Exp. Biol., Symposium No. 5. Carbon Dioxide Fixation and Photosynthesis, p. 176.

  • Van Norman, R. W.,French, C. S. andMacdowall, F. D. H. 1948. The absorption and fluorescence spectra of two marine red algae. Plant Physiol.23: 455.

    Article  PubMed  CAS  Google Scholar 

  • Ochoa, S. 1951. Biological mechanisms of carboxylation and decarboxylation. Physiol. Rev.31: 56.

    PubMed  CAS  Google Scholar 

  • Rabinowitch, E. I. 1950. Photosynthesis. Vol. II.

  • Rieke, F. F. 1949. Quantum efficiency for photosynthesis and photoreduction in green plants.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 12.

  • Roake, W. E. andDole, M. 1950. Oxygen isotope exchange in the electric discharge. Jour. Am. Chem. Soc.72: 36.

    Article  CAS  Google Scholar 

  • Ruben, S., Kamen, M. D. andHassid, W. Z. 1940. Photosynthesis with radioactive carbon. Jour. Am. Chem. Soc.62: 3443.

    Article  CAS  Google Scholar 

  • —,Randall, M., Kamen, M. D. andHyde, J. L. 1941. Heavy oxygen (O18) as a tracer in the study of photosynthesis. Jour. Am. Chem. Soc.63: 877.

    Article  CAS  Google Scholar 

  • Shiau, Y. G. andFranck, J. 1947. Chlorophyll fluorescence and photosynthesis in algae, leaves and chloroplasts. Archiv. Biochem.14: 253.

    CAS  Google Scholar 

  • Sisakyan, N. M. andChamosa, K. G. 1949a. Doklady Akad. Sci. USSR.67: 337. [In Russian].

    CAS  Google Scholar 

  • — andFilippovich, I. I. 1949b. Doklady Akad. Sci. USSR.67: 517. [In Russian].

    CAS  Google Scholar 

  • — andKobyakova, A. M. 1948a. Doklady Akad. Sci. USSR.61: 1065. [In Russian].

    CAS  Google Scholar 

  • —. 1948b. Biokhimiya13: 88. [In Russian].

    CAS  Google Scholar 

  • Spikes, J. D., Lumry, R., Eyring, H. andWayrynen, R. E. 1950. Potential changes in suspensions of chloroplasts upon illumination. Archiv. Biochem28: 48.

    CAS  Google Scholar 

  • Spoehr, H. A. andMilner, H. W. 1949. The chemical composition ofChlorella: effect of environmental conditions. Plant Physiol.24: 120.

    PubMed  CAS  Google Scholar 

  • Stutz, R. E. andBurris, R. H. 1151. Photosynthesis and metabolism of organic acids. Plant Physiol.26: 226.

    Google Scholar 

  • Tanada, T. 1951. The photosynthetic efficiency of carotenoid pigments inNavicula minima. Am. Jour. Bot.38: 276.

    Article  CAS  Google Scholar 

  • Tolmach, L. J. 1951. Triphosphopyridine nucleotide and chloroplasts. Archiv. Biochem.33: 120.

    Article  CAS  Google Scholar 

  • Tonnelat, J. 1946. Étude et construction d’un microcalorimètre et application au rendement de la photosynthèse. Thesis, Paris.

  • Utter, M. F., Lipmann, F. andWerkmann, C. H. 1945. Reversibility of the phosphoroclastic split of pyruvate. Jour. Biol. Chem.158: 521.

    CAS  Google Scholar 

  • Van der Veen, R. 1949. Induction phenomena in photosynthesis. Physiologia Plantarum2: 217.

    Article  Google Scholar 

  • Van Niel, C. B. 1949. The comparative biochemistry of photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 22.

  • Vishniac, W. andOchoa, S. 1951. Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature167: 768.

    Article  PubMed  CAS  Google Scholar 

  • Vogler, K. G. andUmbreit, W. W. 1942. The nature of the energy storage material active in the chemosynthetic process. Jour. Gen. Physiol.26: 157.

    Article  CAS  Google Scholar 

  • Warburg, O. 1948. Assimilatory quotient and photochemical yield. Am. Jour. Bot.35: 194.

    Article  CAS  Google Scholar 

  • — andBurk, D. 1950a. The maximum efficiency of photosynthesis. Archiv. Biochem.25: 410.

    CAS  Google Scholar 

  • ——,Shocken, V. andHendricks, S. B. 1950b. The quantum efficiency of photosynthesis. Biochimica et Biophysica Acta4: 355.

    Article  Google Scholar 

  • - andLuttgens, W. 1946.In O. Warburg, “Heavy Metal Prosthetic Groups”, Chap. 20.

  • — andNegelein, É. 1922. Über die Reduktion der Salpetersaüre in grünen Zellen. Biochem. Zeit.110: 66.

    Google Scholar 

  • ——. 1920. Über den Energieumsatz bei der Kohlensäureassimilation. Zeit. Physikal. Chem.102: 236.

    Google Scholar 

  • — andShocken, V. 1949. A manometric actinometer for the visible spectrum. Archiv. Biochem.21: 363.

    CAS  Google Scholar 

  • Wassinck, E. C. 1947. Photosynthesis as a light sensitized transfer of hydrogen. Antonie van Leeuwenhoek Jour. Microbiol. Sero.12: 212.

    Google Scholar 

  • —,Katz, D. andDorrestein, R. 1941. On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia10: 285.

    Google Scholar 

  • — andKersten, J. A. H. 1943. Observations sur la photosynthèse et la fluorescence chlorophyllienne des diatomées. Enzymologia11: 282.

    Google Scholar 

  • ——. 1946. Observations sur la spectre d’absorption et sur le rôle des carotenoids dans la photosynthèse des diatomées. Enzymologia12: 3.

    Google Scholar 

  • —,Tjia, J. E. andWintermans, J. F. G. M. 1949. Phosphate exchanges in purple sulphur bacteria in connection with photosynthesis. Proc. Kon. Ned. Akad.52: 412.

    Google Scholar 

  • —,Wintermans, J. F. G. M. andTjia, J. E. 1951. Phosphate exchanges inChlorella in relation to conditions for photosynthesis. Proc. Kon. Ned. Akad.54: 41.

    Google Scholar 

  • Weigl, J. W. andCalvin, M. 1949. An isotope effect in photosynthesis. Jour. Chem. Physics17: 210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittingham, C.P. The chemical mechanism of photosynthesis. Bot. Rev 18, 245–290 (1952). https://doi.org/10.1007/BF02861739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861739

Keywords

Navigation