The Botanical Review

, Volume 18, Issue 4, pp 245–290 | Cite as

The chemical mechanism of photosynthesis

  • C. P. Whittingham


The process of photosynthesis is considered as an oxidation-reduction reaction activated by light absorbed by chlorophyll or certain other substances (e.g., phycocyanin, fucoxanthol), resulting in the evolution of oxygen from water and in the formation of reduced carbon compounds (e.g., carbohydrate) from carbon dioxide. The organisation of the reaction in the cell is not yet understood-the poor photosynthetic activity of light absorbed by chlorophyll in certain red algae may be indicative of a change in this organisation. When chloroplasts are isolated from the cell they are able to catalyse the photochemical reduction of certain hydrogen acceptors with evolution of oxygen from water, but they are unable to reduce carbon dioxide. Analysis of the path of carbon in the green plant cell, both in the light and in the dark, has been made possible by the use of radioactive carbon dioxide. A large number of intermediates in the metabolism of the cell have been identified, but as yet convincing evidence regarding the specific part played by any of these compounds in a particular metabolic process is lacking. The metabolic system of the cell may be analysed in terms of a number of separate processes, but it seems probable that these may have many steps in common. The reactions which must be unique to photosynthesis are those reactions involving at most two light quanta per hydrogen atom transferred which result in the formation of a hydrogen donor capable of reducing carbon dioxide. Comparative studies of the rate of photosynthesis and of the rate of individual steps, as represented for example by the chloroplast reaction and by tracer studies, present the most promising approach to the physiology of photosynthesis.


Chlorophyll Botanical Review Pyruvic Acid Hydrogen Donor Hydrogen Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. B., Guest, B. H. andKamen, M. 1947. Differential inhibition of respiration and dark carbon dioxide fixation inScenedesmus andChlorella. Archiv. Biochem.14: 335.Google Scholar
  2. Arnold, W. 1949. A calorimetric determination of the quantum yield in photosynthesis.In Franck, J. and Loomis, W., “Photosynthesis in Plants”, Chap. 13.Google Scholar
  3. — andOppenheimer, H. J. 1950. Internal conversion in the photosynthetic mechanism of blue green algae. Jour. Gen. Physiol.33: 423.CrossRefGoogle Scholar
  4. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant Physiol.24: 1.PubMedGoogle Scholar
  5. —. 1951. Extracellular photosynthetic reactions. Nature167: 1008.PubMedCrossRefGoogle Scholar
  6. — andWhatley, F. R. 1949a. Is chloride a coenzyme of photosynthesis ? Science110: 554.PubMedCrossRefGoogle Scholar
  7. —— 1949b. Factors influencing oxygen production by illuminated chloroplast fragments. Archiv. Biochem.23: 141.Google Scholar
  8. Aronoff, S. 1946. Photochemical reduction of chloroplast grana. Plant Physiol.21: 393.PubMedGoogle Scholar
  9. — andVernon, L. 1950. Metabolism of soy bean leaves. I. The sequence of formation of the soluble carbohydrates. Archiv. Biochem.28: 424.Google Scholar
  10. Audus, L. J. 1947. The effects of illumination on the respiration of shoots of the cherry laurel. Ann. Bot.11: 165.Google Scholar
  11. Aufdemgarten, H. 1939. Zur Kenntnis der Sogenannten Induktionsvorgänge bei der Kohlensäureassimilation. Planta29: 643.CrossRefGoogle Scholar
  12. Barker, H. A. [Unpub., quoted by Van Niel in 1949].Google Scholar
  13. Bassham, J. A., Benson, A. A. andCalvin, M. 1950. The path of carbon in photosynthesis. VIII. The role of malic acid. Jour. Biol. Chem.185: 781.Google Scholar
  14. Benson, A. A., Bassham, J. A., Calvin, M., Goodale, T. C., Kaas, V. A. andStepka, W. 1950a. The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. Jour. Am. Chem. Soc.72: 1710.CrossRefGoogle Scholar
  15. — andCalvin, M. 1950b. The path of carbon in photosynthesis. VII. Respiration and photosynthesis. Jour. Exp. Bot.1: 63.CrossRefGoogle Scholar
  16. —. 1951. Jour. Am. Chem. Soc.73: 2973.CrossRefGoogle Scholar
  17. Blackman, F. F. 1905. Optima and limiting factors. Ann. Bot.19: 281.Google Scholar
  18. Blinks, L. R. andYocum, C. S. [Unpub.]Google Scholar
  19. Boichenko, E. A. 1943. Conditions necessary for the activity of chloroplasts outside the cell. Compt. Rend. Akad. Sci. U.R.S.S.38: 181.Google Scholar
  20. —. 1944. Catalysts of activity of isolated chloroplasts. Compt. Rend. Akad. Sci. U.R.S.S.42: 345.Google Scholar
  21. Boyle, F. P. 1948. Some factors involved in oxygen from triturated spinach leaves. Science108: 359.PubMedCrossRefGoogle Scholar
  22. Bradfield, J. R. G. 1947. Plant carbonic anhydrase. Nature159: 467.CrossRefGoogle Scholar
  23. Briggs, G. E. 1929. The energetic efficiency of photosynthesis in green plants. Proc. Royal Soc. (London) B105: 1.Google Scholar
  24. —. 1935. Photosynthesis in intermittent light in relation to current formulations of the principles of the photosynthetic mechanism. Biol. Rev. Cambridge Phil. Soc.10: 460.CrossRefGoogle Scholar
  25. -. 1949. [Private communication].Google Scholar
  26. Brown, A. H. andFranck, J. 1948. On the participation of carbon dioxide in the photosynthetic activity of illuminated chloroplasts. Archiv. Biochem.16: 55.Google Scholar
  27. -,Fager, E. W. andGaffron, H. 1949. Kinetics of photochemical intermediates in photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 20.Google Scholar
  28. Burk, D. andWarburg, O. Ein Quantenreaktion und Kreisprozess der Energie bei der Photosynthese. 1950. Naturwiss.37: 560; 1951. Zeit. Naturforsch.6b: 12.CrossRefGoogle Scholar
  29. Buy, H. G. Du, Woods, M. W. andLackey, M. D. 1950. Enzymatic activities of isolated normal and mutant mitochondria and plastids of higher plants. Science111: 572.CrossRefGoogle Scholar
  30. Calvin, M. 1949. The path of carbon in photosynthesis. Jour. Chem. Ed.26: 639.CrossRefGoogle Scholar
  31. -,Bassham, J. A., Benson, A. A., Lynch, V. H., Ouellet, C., Schou, L., Stepka, W., andTolbert, N. E. 1951. Carbon dioxide assimilation in plants. Soc. Exp. Biol., Symposium No. 5. Carbon Dioxide Fixation and Photosynthesis, p. 284.Google Scholar
  32. Clendenning, K. A. 1950. Distribution of tracer carbon among the lipids of the algaScenedesmns during brief photosynthetic exposures. Archiv. Biochem.27: 75.Google Scholar
  33. — andEhrmantraut, H. 1950. Photosynthesis and Hill reactions by wholeChlorella cells in continuous and flashing light. Archiv. Biochem.29: 387.Google Scholar
  34. — andGorham, P. R. 1950. Dark reactions and photochemical activity of isolated chloroplasts in relation to their source and previous history. I, II, III. Can. Jour. Res.28: 78, 102, 114.Google Scholar
  35. Conn, E., Vennesland, B. andKraemer, L. M. 1949. Distribution of a TPN specific enzyme catalyzing the reversible oxidation decarboxylation of malic acid in higher plants. Archiv. Biochem.23: 179.Google Scholar
  36. Davenport, H. E. andHill, R. 1951. The preparation and some properties of cytochrome f. Proc. Royal Soc. (London). [In press].Google Scholar
  37. Davis, E. A. 1950. Likelihood of photorespiration or light inhibited respiration in green plants. Science112: 113.PubMedCrossRefGoogle Scholar
  38. Day, R. andFranklin, J. 1946. Isotopic composition of photosynthetic oxygen. Science100: 363.CrossRefGoogle Scholar
  39. Dole, M. andJenks, G. 1944. Istopic composition of photosynthetic oxygen. Science100: 409.PubMedCrossRefGoogle Scholar
  40. Ducet, G. andRosenberg, A. J. 1951. Activité respiratoire chez les végétaux superieurs. II. Activité cytochrome oxydasique et polyphenoloxydasique. Bull. Soc. Chim. Biol.33: 321.PubMedGoogle Scholar
  41. Dutton, H. J. andManning, W. M. 1941. Evidence for carotenoidsensitized photosynthesis in the diatomNitschia closterium. Am. Jour. Bot.28: 516.CrossRefGoogle Scholar
  42. —— andDuggar, B. M. 1943. Chlorophyll fluorescence and energy transfer in the diatomNitschia closterium. Jour. Phys. Chem.47: 308.CrossRefGoogle Scholar
  43. Duysens, L. N. M. 1951. Transfer of light energy within the pigment system present in photosynthesizing cells. Nature168: 548.PubMedCrossRefGoogle Scholar
  44. Emerson, R. andArnold, W. 1932. A separation of the reactions in photosynthesis by means of intermittent light. Jour. Gen. Physiol.15: 391.CrossRefGoogle Scholar
  45. — andLewis, C. M. 1939. Factors influencing the efficiency of photosynthesis. Am. Jour. Bot.20: 808.CrossRefGoogle Scholar
  46. — andLewis, C. M. 1942. The photosynthetic efficiency of phycocyanin inChroococcus. Jour. Gen. Physiol.25: 579.CrossRefGoogle Scholar
  47. — andLewis, C. M. 1943. The dependence of the quantum yield ofChlorella photosynthesis on wavelengths of light. Am. Jour. Bot.30: 165.CrossRefGoogle Scholar
  48. - andNishimura, M. S. 1949. The quantum requirement of photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 10.Google Scholar
  49. Emerson, R. L., Stauffer, J. F. andUmbreit, W. W. 1944. Relationships between phosphorylation and photosynthesis inChlorella. Am. Jour. Bot.31: 107.CrossRefGoogle Scholar
  50. Eyster, H. C. 1950. Catalase activity in chloroplast pigment deficient types of corn. Plant Physiol.25: 630.PubMedGoogle Scholar
  51. Fan, C. S., Stauffer, J. F. andUmbreit, W. W. 1943. An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis byChlorella. Jour. Gen. Physiol.27: 15.CrossRefGoogle Scholar
  52. Fager, E. W., Rosenberg, J. L. andGaffron, H. 1950. Intermediates in photosynthesis. Fed. Proc.9: 535.PubMedGoogle Scholar
  53. Franck, J. 1949a. The relation of the fluorescence of chlorophyll to photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 16.Google Scholar
  54. —. 1949b. An interpretation of the contradictory results in measurements of the photosynthetic yield and related phenomena. Archiv. Biochem.23: 297.Google Scholar
  55. —. 1951. A critical survey of the physical background of photosynthesis. Ann. Rev. Plant Physiol.2: 53.CrossRefGoogle Scholar
  56. — andFrench, C. S. 1941. Photoxidation processes in plants. Jour. Gen. Physiol.25: 309.CrossRefGoogle Scholar
  57. — andPuck, T. T. 1941. The fluorescence of chlorophyll and photosynthesis. Jour. Physiol. Chem.45: 1268.CrossRefGoogle Scholar
  58. — andHerzfeld, K. F. 1941. Contribution to a theory of photosynthesis. Jour. Physiol. Chem.45: 978.CrossRefGoogle Scholar
  59. French, C. S., Holt, A. S., Powell, R. D. andAnson, M. L. 1946. The evolution of oxygen from illuminated suspensions of frozen, dried and homogenized chloroplasts. Science103: 505.PubMedCrossRefGoogle Scholar
  60. — andRabideau, G. S. 1945. The quantum yield of oxygen production by chloroplasts suspended in solutions containing ferric oxalate. Jour. Gen. Physiol.28: 329.CrossRefGoogle Scholar
  61. Frenkel, A. W. 1941. Photosynthesis with radio-active carbon and the distribution of the intermediate products in the plant cell. Plant Physiol.16: 654.PubMedCrossRefGoogle Scholar
  62. Gabrielson, E. K. 1940. Einfluss der Lichtfaktoren auf die Kohlensäureassimilation der Laubblätter. Dansk. Bot. Arkiv.10: 1.Google Scholar
  63. Gaffron, H. 1944. Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev., Cambridge Phil. Soc.19: 1.CrossRefGoogle Scholar
  64. — andFager, E. W. 1951. The kinetics and chemistry of photosynthesis. Ann. Rev. Plant Physiol.2: 87.CrossRefGoogle Scholar
  65. Haxo, F. T. andBlinks, L. R. 1950. Photosynthetic action spectra of marine algae. Jour. Gen. Physiol.33: 389.CrossRefGoogle Scholar
  66. Hill, R., Davenport, H. E. andWhatley, F. R. 1951. A natural factor catalysing reduction of methaemoglobin by isolated chloroplasts. Proc. Royal Soc. (London) [In press].Google Scholar
  67. — andScarisbrick, R. 1940. Production of oxygen by illuminated chloroplasts. Nature146: 61.CrossRefGoogle Scholar
  68. ——. 1940. The reduction of ferric oxalate by isolated chloroplasts. Proc. Royal Soc. (London) B129: 238.Google Scholar
  69. Holt, A. S. andFrench, C. S. 1946. The photochemical production of oxygen and hydrogen ion by isolated chloroplasts. Archiv. Biochem.9: 25.Google Scholar
  70. ——. 1948a. Isotopic analysis of the oxygen evolved by illuminated chloroplasts. Archiv. Biochem.19: 429.Google Scholar
  71. ——. 1948b. Oxygen production by illuminated chloroplasts suspended in solutions of oxidants. Archiv. Biochem.19: 368.Google Scholar
  72. ——,Smith, R. F. andFrench, C. S. 1951. Dye reduction by illuminated chloroplasts. Plant Physiol.26: 164.PubMedCrossRefGoogle Scholar
  73. Johnson, F. H., Eyring, H., Steblay, R., Chaplin, H., Huber, C., andGherardi, G. 1945. The nature and control of reactions in bioluminescence. Jour. Gen. Physiol.28: 463.CrossRefGoogle Scholar
  74. Kamen, M. D. 1949. Some remarks on tracer researches in photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 18.Google Scholar
  75. — 1950. Hydrogenase activity and photoassimilation. Fed. Proc.9: 543.PubMedGoogle Scholar
  76. — andBarker, H. A. 1945. Inadequacies in present knowledge of the relation between photosynthesis and O18 content of atmosphere. Proc. Nat. Acad. Sci.31: 8.PubMedCrossRefGoogle Scholar
  77. Kok, B. 1948. A critical consideration of the quantum yield ofChlorella photosynthesis. Enzymologia13: 1.Google Scholar
  78. Kumm, J. andFrench, C. S. 1945. The evolution of oxygen from suspensions of chloroplasts. Am. Jour. Bot.32: 291.CrossRefGoogle Scholar
  79. Livingston, R. 1949. The photochemistry of chlorophyll.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 7.Google Scholar
  80. Macdowall, F. D. H. 1949. The effect of some inhibitors of photosynthesis upon the photochemical reduction of a dye by isolated chloroplasts. Plant Physiol.24: 462.PubMedGoogle Scholar
  81. McAlister, E. D. 1939. The chlorophyll carbon dioxide ratio in photosynthesis. Jour. Gen. Physiol.22: 613.CrossRefGoogle Scholar
  82. - andMyers, J. 1940. The time course of photosynthesis and fluorescence observed simultaneously. Smithsonian Inst. Pub., Misc. Coll.99(6).Google Scholar
  83. Mehler, A. H. 1951. Studies on reactions of illuminated chloroplasts. Archiv. Biochem.33: 65.CrossRefGoogle Scholar
  84. Milner, H. W., French, C. S., Koenig, M. L. G. andLawrence, N. S. 1950a. Measurement and stabilization of activity of chloroplast material. Archiv. Biochem.28: 193.Google Scholar
  85. —,Lawrence, N. S. andFrench, C. S. 1950b. Colloidal dispersion of chloroplast material. Science111: 633.PubMedCrossRefGoogle Scholar
  86. Moore, W. E. andDuggar, B. M. 1949. Quantum efficiency of photosynthesis inChlorella. In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 11.Google Scholar
  87. Neish, A. C. 1939. Studies on chloroplasts. Biochem. Jour.33: 300.Google Scholar
  88. Nier, A. O. 1950. [In Science Today7: 158 as reported in Nature166: 756].Google Scholar
  89. Nishimura, M. S., Whittingham, C. P. andEmerson, R. 1951. The maximum efficiency of photosynthesis. Soc. Exp. Biol., Symposium No. 5. Carbon Dioxide Fixation and Photosynthesis, p. 176.Google Scholar
  90. Van Norman, R. W.,French, C. S. andMacdowall, F. D. H. 1948. The absorption and fluorescence spectra of two marine red algae. Plant Physiol.23: 455.PubMedCrossRefGoogle Scholar
  91. Ochoa, S. 1951. Biological mechanisms of carboxylation and decarboxylation. Physiol. Rev.31: 56.PubMedGoogle Scholar
  92. Rabinowitch, E. I. 1950. Photosynthesis. Vol. II.Google Scholar
  93. Rieke, F. F. 1949. Quantum efficiency for photosynthesis and photoreduction in green plants.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 12.Google Scholar
  94. Roake, W. E. andDole, M. 1950. Oxygen isotope exchange in the electric discharge. Jour. Am. Chem. Soc.72: 36.CrossRefGoogle Scholar
  95. Ruben, S., Kamen, M. D. andHassid, W. Z. 1940. Photosynthesis with radioactive carbon. Jour. Am. Chem. Soc.62: 3443.CrossRefGoogle Scholar
  96. —,Randall, M., Kamen, M. D. andHyde, J. L. 1941. Heavy oxygen (O18) as a tracer in the study of photosynthesis. Jour. Am. Chem. Soc.63: 877.CrossRefGoogle Scholar
  97. Shiau, Y. G. andFranck, J. 1947. Chlorophyll fluorescence and photosynthesis in algae, leaves and chloroplasts. Archiv. Biochem.14: 253.Google Scholar
  98. Sisakyan, N. M. andChamosa, K. G. 1949a. Doklady Akad. Sci. USSR.67: 337. [In Russian].Google Scholar
  99. — andFilippovich, I. I. 1949b. Doklady Akad. Sci. USSR.67: 517. [In Russian].Google Scholar
  100. — andKobyakova, A. M. 1948a. Doklady Akad. Sci. USSR.61: 1065. [In Russian].Google Scholar
  101. —. 1948b. Biokhimiya13: 88. [In Russian].Google Scholar
  102. Spikes, J. D., Lumry, R., Eyring, H. andWayrynen, R. E. 1950. Potential changes in suspensions of chloroplasts upon illumination. Archiv. Biochem28: 48.Google Scholar
  103. Spoehr, H. A. andMilner, H. W. 1949. The chemical composition ofChlorella: effect of environmental conditions. Plant Physiol.24: 120.PubMedGoogle Scholar
  104. Stutz, R. E. andBurris, R. H. 1151. Photosynthesis and metabolism of organic acids. Plant Physiol.26: 226.Google Scholar
  105. Tanada, T. 1951. The photosynthetic efficiency of carotenoid pigments inNavicula minima. Am. Jour. Bot.38: 276.CrossRefGoogle Scholar
  106. Tolmach, L. J. 1951. Triphosphopyridine nucleotide and chloroplasts. Archiv. Biochem.33: 120.CrossRefGoogle Scholar
  107. Tonnelat, J. 1946. Étude et construction d’un microcalorimètre et application au rendement de la photosynthèse. Thesis, Paris.Google Scholar
  108. Utter, M. F., Lipmann, F. andWerkmann, C. H. 1945. Reversibility of the phosphoroclastic split of pyruvate. Jour. Biol. Chem.158: 521.Google Scholar
  109. Van der Veen, R. 1949. Induction phenomena in photosynthesis. Physiologia Plantarum2: 217.CrossRefGoogle Scholar
  110. Van Niel, C. B. 1949. The comparative biochemistry of photosynthesis.In Franck, J. and Loomis, W. E., “Photosynthesis in Plants”, Chap. 22.Google Scholar
  111. Vishniac, W. andOchoa, S. 1951. Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature167: 768.PubMedCrossRefGoogle Scholar
  112. Vogler, K. G. andUmbreit, W. W. 1942. The nature of the energy storage material active in the chemosynthetic process. Jour. Gen. Physiol.26: 157.CrossRefGoogle Scholar
  113. Warburg, O. 1948. Assimilatory quotient and photochemical yield. Am. Jour. Bot.35: 194.CrossRefGoogle Scholar
  114. — andBurk, D. 1950a. The maximum efficiency of photosynthesis. Archiv. Biochem.25: 410.Google Scholar
  115. ——,Shocken, V. andHendricks, S. B. 1950b. The quantum efficiency of photosynthesis. Biochimica et Biophysica Acta4: 355.CrossRefGoogle Scholar
  116. - andLuttgens, W. 1946.In O. Warburg, “Heavy Metal Prosthetic Groups”, Chap. 20.Google Scholar
  117. — andNegelein, É. 1922. Über die Reduktion der Salpetersaüre in grünen Zellen. Biochem. Zeit.110: 66.Google Scholar
  118. ——. 1920. Über den Energieumsatz bei der Kohlensäureassimilation. Zeit. Physikal. Chem.102: 236.Google Scholar
  119. — andShocken, V. 1949. A manometric actinometer for the visible spectrum. Archiv. Biochem.21: 363.Google Scholar
  120. Wassinck, E. C. 1947. Photosynthesis as a light sensitized transfer of hydrogen. Antonie van Leeuwenhoek Jour. Microbiol. Sero.12: 212.Google Scholar
  121. —,Katz, D. andDorrestein, R. 1941. On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia10: 285.Google Scholar
  122. — andKersten, J. A. H. 1943. Observations sur la photosynthèse et la fluorescence chlorophyllienne des diatomées. Enzymologia11: 282.Google Scholar
  123. ——. 1946. Observations sur la spectre d’absorption et sur le rôle des carotenoids dans la photosynthèse des diatomées. Enzymologia12: 3.Google Scholar
  124. —,Tjia, J. E. andWintermans, J. F. G. M. 1949. Phosphate exchanges in purple sulphur bacteria in connection with photosynthesis. Proc. Kon. Ned. Akad.52: 412.Google Scholar
  125. —,Wintermans, J. F. G. M. andTjia, J. E. 1951. Phosphate exchanges inChlorella in relation to conditions for photosynthesis. Proc. Kon. Ned. Akad.54: 41.Google Scholar
  126. Weigl, J. W. andCalvin, M. 1949. An isotope effect in photosynthesis. Jour. Chem. Physics17: 210.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1952

Authors and Affiliations

  • C. P. Whittingham
    • 1
    • 2
  1. 1.Botany SchoolCambridge UniversityEngland
  2. 2.Botany DepartmentUniversity of IllinoisUSA

Personalised recommendations