The Botanical Review

, 15:195 | Cite as

Effects of minor elements on the physiology of fungi

  • D. Perlman


Botanical Review Minor Element Synthetic Medium Submerged Culture Itaconic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abraham, E. P.,et al. Further observations on penicillin. Lancet.241: 177–188. 1941.CrossRefGoogle Scholar
  2. 2.
    Acock, A. M. An examination of Mulder’s rapid biological method for estimating the amount of copper in soils. Jour. Australian Coun. Sci. & Ind. Res.14: 288–300. 1941.Google Scholar
  3. 3.
    Ainsworth, G. C.,et al. A method for the large scale production of streptomycin by surface culture. Jour. Gen. Microbiol.1: 335–343. 1947.Google Scholar
  4. 4.
    Albert, A., andGledhill, W. S. The choice of a chelating agent for inactivating trace metals. I. Survey of commercially available chelating agents. Biochem. Jour.41: 529–533. 1947.Google Scholar
  5. 5.
    — andMcGrath, D.. The choice of a chelating agent for inactivating trace metals. II. Derivatives of oxine (8-hydroxyquinoline). Biochem. Jour.41: 534–545. 1947.Google Scholar
  6. 6.
    et al. The influence of chemical constitution on antibacterial activity. III. A study of 8-hydroxyquinoline (oxine) and related compounds. Brit. Jour. Exp. Path.28: 69–87. 1947.Google Scholar
  7. 7.
    Bailey, J. H., andCavallito, C. J. Production of citrinin. Jour. Bact.45: 30–31. 1943.Google Scholar
  8. 8.
    Bennett, R. E. Nutrition ofStreptomyces griseus in relation to streptomycin titer. Jour. Bact.53: 254. 1947.Google Scholar
  9. 9.
    Bern Hauer, K. et al. X. [Influence of the kind of sugar on citric acid formation]. [German]. Biochem Zeits307: 298–308. 1941.Google Scholar
  10. 10.
    et al. [Formation of acid from sugar byA. niger. XI. Factors determining the accumulation of citric acid]. [German]. Biochem. Zeits.309: 151–178. 1941.Google Scholar
  11. 11.
    Bertrand, D. [Importance of the trace-element vanadium forAspergillus niger]. [French]. Compt. Rend. Acad. Sci. (Paris)213: 254–257. 1941.Google Scholar
  12. 12.
    — [Vanadium as a growth factor forAspergillus niger]. [French]. Bull. Soc. Chim. Biol.23: 467–471. 1941.Google Scholar
  13. 13.
    — [V, an oligosynergic element forAspergillus niger]. [French]. Ann. Inst. Pasteur68: 226–244. 1942.Google Scholar
  14. 14.
    Brit. Intel. Off. Sub-corn., Final Rep. 220. Production of citric acid at the factory of Joh. A. Benckiser, Lardenburg, near Heidelberg. British Intelligence Sub-Committee, 32 Bryanston Sq., London, W.C.1. 1946.Google Scholar
  15. 15.
    - Final Rep. 489 Chemische Fabrik Joh. A. Benckiser G.M.B.H. Manufacture of calcium citrate. British Intelligence Sub-Committee, 32 Bryanston Sq., London, W.C.1. 1946.Google Scholar
  16. 16.
    Bird, M. L., andChallenger, F. Formation of organometalloidal and similar compounds by microorganisms. VII. Dimethyl telluride. Jour. Chem. Soc.1939: 163–168.Google Scholar
  17. 17.
    - and -. Biological methylation. IX. The action ofScopulariopsis brevicaulis and certain penicillia on salts of aliphatic selenic and selenonic acids. Jour. Chem. Soc.1942: 574–577.Google Scholar
  18. 18.
    Birkinshaw, J. H. et al. Patulin in the common cold. II. Biochemistry and chemistry. Lancet.243: 625–630. 1943.CrossRefGoogle Scholar
  19. 19.
    et al. Studies in the biochemistry of microorganisms. LXXII. Gentisyl alcohol (2:5 dihydroxybenzyl alcohol), a metabolic product ofP. patulum Bainier. Biochem. Jour.37: 726–728. 1943.Google Scholar
  20. 19a.
    Blank, L. M. Response ofPhytnatotrichum omnivorum to certain trace elements. Jour. Agr. Res.62: 129–160. 1941.Google Scholar
  21. 20.
    Boehm, R. M. et al. Clarified sugar solutions for fermentation. U. S. Patent 2,421,985. 1947.Google Scholar
  22. 21.
    Bojanovsky, R. [The need for iron by the cellulose-splitting fungi and their relationship to the conditions under which ferric ions are chemically adsorbed]. [German]. Zentr. Bakt. Parasitenk. II. Abt.99: 48–55. 1938.Google Scholar
  23. 22.
    — [Pure cultures of fungi obtained by the selective action of ions]. [German]. Zentr. Bakt. Parasitenk. II. Abt.99: 55–60. 1938.Google Scholar
  24. 23.
    Bonner, D.,et al. The genetic control of biochemical reactions inNeurospora: A mutant strain requiring isoleucine and valine. Arch. Biochem8: 71–91. 1943.Google Scholar
  25. 24.
    Brack, A. [Antibacterial compounds. I. The isolation of gentisyl alcohol in addtion to patulin from the filtrate of a penicillium culture. Some derivatives of gentisyl alcohol]. [German]. Helv. Chim. Acta30: 1–8. 1947.CrossRefGoogle Scholar
  26. 25.
    Brian, P. W. Production of gliotoxin byPenicillium terlikowskii Zal. Trans. Brit. Mycol. Soc.29: 211–218. 1946.CrossRefGoogle Scholar
  27. 26.
    Burk, D.,et al. Cobalt inhibition of tissue respiration, glycolysis and growth. Fed. Proc.5: 126–127. 1946.Google Scholar
  28. 27.
    Carpenter, C. C., andFriedlander, E. W. Occurrence of vitamins in fungi. Science95: 625. 1942.PubMedCrossRefGoogle Scholar
  29. 28.
    — andStrong, F. M. Determination of pyridoxin pseudopyridoxin. Arch. Biochem.3: 375–388. 1944.Google Scholar
  30. 29.
    Chrzaszcz, T., andZakomorny, M. [The degeneration of biochemical properties of strongly acidifyingAspergillus niger cultures]. [Polish]. Przemsl. Chem.22: 296–302. 1938.Google Scholar
  31. 30.
    Clayton, G. E. et al. Preparation of penicillin. Improved method of isolation. Biochem. Jour.38: 452–458. 1944.Google Scholar
  32. 31.
    Cook, R. P., andBrown, M. B. Some constituents of aqueous extracts of ground dried peas. Biochem. Jour.39: 24. 1945.Google Scholar
  33. 32.
    et al. The production of penicillin using fractions obtained from aqueous extracts of pea (Piseum sativum). Biochem. Jour.39: 314–317. 1945.Google Scholar
  34. 33.
    et al. Factors in aqueous extracts of peas responsible for penicillin production. Biochem. Jour.39: 23. 1945.Google Scholar
  35. 34.
    Corum, C. J. Carbohydrate nutrition ofRhizopus suinus. Bot. Gaz.103: 740–750. 1942.CrossRefGoogle Scholar
  36. 35.
    Coulthard, C. E. et al. Notatin: an antibacterial glucose-aerodehydrogenase fromPenicillium notatum Westling andPenicillium resticulosum sp. nov. Biochem. Jour.39: 24–36. 1945.Google Scholar
  37. 36.
    Curtin, T.,et al. Production of phoenicine on synthetic media. I.Penicillium phoenic eum van Beyma. II.Penicillium rubrum Grasberger-Stoll. Biochem. Jour.34: 1605–1610. 1940.Google Scholar
  38. 37.
    Dillon-Weston, W. A. R., andTaylor, R. E. Development ofPenicillium on the cut surfaces of certain vegetables. Nature151: 54–55. 1943.CrossRefGoogle Scholar
  39. 38.
    —— Development of mold on the cut surface of potato tubers. Jour. Agr. Sci.34: 93–96. 1944.Google Scholar
  40. 39.
    Erb, N. M., andHilderbandt, F. M. Mold as an adjunct to malt in grain fermentation. Ind. Eng. & Chem.38: 791–794. 1946.Google Scholar
  41. 39a.
    Ezekiel, W. N. Synthetic culture media for the root-rot fungusPhymatotrichum omnivorum. Phytopath.35: 159–161. 1945.Google Scholar
  42. 40.
    Fischer, J. [The effect of heavy metals onAspergillus niger. I. Starch decomposition]. [German]. Planta32: 395–413. 1942.CrossRefGoogle Scholar
  43. 41.
    Foster, J. W. Heavy metal nutrition of fungi. Bot. Rev.5: 207–239. 1939.Google Scholar
  44. 42.
    — Some introspections on mold metabolism. Bact. Rev.11: 167–188. 1947.PubMedGoogle Scholar
  45. 43.
    —,et al. Microbiological aspects of penicillin. V. Conidiospore formation in submerged cultures ofPenicillium notatum. Jour. Bact.50: 365–368. 1945.Google Scholar
  46. 44.
    —, andWaksman, S. A. Production of fumaric acid by molds belonging to the genusRhizopus. Jour. Am. Chem. Soc.16: 127–135. 1939.CrossRefGoogle Scholar
  47. 45.
    —,et al. Microbiological aspects of penicillin. III. Production of penicillin in surface cultures ofPenicillium notatum. Jour. Bact.46: 421–433. 1943. (Abst.: Foster, J. W. Microbiological aspects of penicillin formation. Jour. Bact. 45: 65). 1943.Google Scholar
  48. 46.
    —,et al. Microbiological aspects of penicillin. IV. Production of penicillin in submerged cultures ofPenicillium notatum. Jour. Bact.51: 465–478. 1946.Google Scholar
  49. 47.
    Fries, N. [On the importance of growth-factors for the growth of fungi]. [German]. Sym. Bot. Upsaliensis3: 1–188. 1938.Google Scholar
  50. 48.
    Gastrock, E. A.,et al. Gluconic acid production on pilot-plant scale; effect of variables on production by submerged mold growth. Ind. Eng. & Chem.30: 782–789. 1938.CrossRefGoogle Scholar
  51. 49.
    Gerhardt, P.,et al. Citric acid fermentation of beet molasses. Jour. Bact.52: 555–564. 1946.Google Scholar
  52. 50.
    Gilbert, W. J. andHickey, R. J. Production of conidia in submerged cultures ofPenicillium notatum. Jour. Bact.51: 731–733. 1946.Google Scholar
  53. 51.
    Hubert, B. [Copper tolerance ofPenicillium waksmanii Zaleski. Biol. Jaarb. Natuurw. Genootsch. Dodonaea5: 326–329]. [Dutch]. (Biol. Abst. 14: 7573.)Google Scholar
  54. 52.
    Hutner, S. H. Unidentified trace element requirements of photosynthetic purple bacteria. Jour. Bact.51: 575–576. 1946.Google Scholar
  55. 53.
    — Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. Jour. Bact.52: 213–221. 1946.Google Scholar
  56. 54.
    Iuracec, A. [Influence of iron on the acidity variations of the nutrient solution ofAspergillus niger.] [Roumanian]. Bull. Sect. Sci. Acad. Roumaine 19: 209–212. (Chem. Abst. 34: 3301). 1937–8.Google Scholar
  57. 55.
    Jarvis, F. G. Synthetic media for the production of penicillin. M. Sc. Thesis, Univ. Wis. 1946. lGoogle Scholar
  58. 56.
    -, andJohnson, M. J. The role of the constituents of synthetic media for penicillin production byP. chrysogenum Q-176 in shake flasks. Abst. Am. Chem. Soc. Chicago meeting, Sept. 9–13, p 12B-13B. 1946.Google Scholar
  59. 57.
    —— The role of the constituents of synthetic media for penicillin production. Jour. Am. Chem. Soc.69: 3010–3011. 1947.CrossRefGoogle Scholar
  60. 58.
    Javillier, M. M. [Copper andAspergillus niger]. [French]. Ann. Ferment. (Paris)5: 371–381. 1939.Google Scholar
  61. 59.
    Joslyn, M. A. The mineral metabolism of yeast. Wallerstein Lab. Comm.4: 49–64. 1941.Google Scholar
  62. 60.
    Karow, E. O. Production of citric acid in submerged culture. Ph.D. Thesis, Rutgers Univ. 1942.Google Scholar
  63. 61.
    — Factors affecting the production of citric acid in submerged cultures. Jour. Bact.54: 41. 1947.Google Scholar
  64. 62.
    —, andWaksman, S. A. Production of citric acid in submerged culture. Ind. Eng. & Chem.39: 821–5. 1947.CrossRefGoogle Scholar
  65. 63.
    Kauffmann-Cosla, O., andBrull, R. [Action of zinc on cellular resorption]. [German]. Arch. Int. Pharmacodynamie63: 326–35. 1939.Google Scholar
  66. 64.
    et al. [Biological action of zinc]. [German]. Bull. Soc. Chim. Biol.21: 422. 1939. (Chem. Abst. 33: 5432).Google Scholar
  67. 65.
    et al. [Effect of ions on the germination and development of the spores ofA. niger]. [French]. Rev. Gen. Bot.52: 97–111. 1940.Google Scholar
  68. 66.
    Kelner, A., andMorton, H. E. Two antibiotics (lavendulin and actinorubin) produced by actinomycetes. I. Isolation and characteristics of the organisms. Jour. Bact.53: 695–704. 1947.Google Scholar
  69. 67.
    Kind, A. [Acid production of fungi and its influence on timbers impregnated with CuSO4]. [French]. Bull. Schwiez. Elektrotech. Ver.35: 174–261. 1945. (Rev. Appl. Myc. 25: 284).Google Scholar
  70. 68.
    Kita, D A. Factors affecting the production of citric acid from molasses byAspergillus niger. B. S. Thesis, Univ. Wis. 1944.Google Scholar
  71. 69.
    Kitavin, G. S. [Action of mercury salts on the formation of B2 inA. niger]. [Russian]. Biokhimiya4: 283–94. 1939.Google Scholar
  72. 70.
    — [Crystalline riboflavin obtained through the action of mercuric salts onA. niger]. [Russian]. Compt. Rend. Acad. Sci. U.S.S.R.28: 517–18. 1940.Google Scholar
  73. 71.
    Knight, S. G. The effect of certain inorganic constituents on penicillin production and mold metabolism in shake flask fermentations. Ph.D. Thesis, Univ. Wis. 1946.Google Scholar
  74. 72.
    —, andFrazier, W. C. The effect of cornsteep liquor ash on penicillin production. Science102: 617–618. 1945.PubMedCrossRefGoogle Scholar
  75. 73.
    Knobloch, H., andSellmann, R. [The formation of flavintype pigments in liquid cultures ofAsperaillus niger]. [German]. Zentr. Bakt. Parasitenk. II Abt.103: 277–80. 1941.Google Scholar
  76. 74.
    — andMiksch, J. N. [Formation of acid from sugar byA. niger. XIII. Influence of H2SeO3 on the citric acid production byA. niger]. [German]. Biochcm. Zeits.309: 90–9. 1941.Google Scholar
  77. 75.
    — andSellmann, R. [Influence of trace elements in water on acid production by strains ofA. Niger]. [German]. Biochem. Zeits.309: 145–150. 1941.Google Scholar
  78. 76.
    Koffler, H.,et al. The effect of certain chemicals on penicillin production and mold metabolism in shake-flask fermentation. Jour. Bact.50: 549–59. 1945.Google Scholar
  79. 77.
    —,et al. Metabolic changes in submerged penicillin fermentations on synthetic media. Jour. Bact.51: 385–392. 1946.Google Scholar
  80. 78.
    —,et al. The effect of certain mineral elements on the production of penicillin in shake flasks. Jour. Bact.53: 115–123. 1947.Google Scholar
  81. 79.
    Leonian, L. H., andLilly, V. G. Studies on the nutrition of fungi. IV. Factors influencing the growth of some thiamine fungi. Am. Jour. Bot.27: 18–26. 1940.CrossRefGoogle Scholar
  82. 80.
    —— Studies on the nutrition of fungi. V. Factors affecting zygospore formation inPhycomyces blakesleeanus. Am. Jour. Bot.27: 670–5. 1940.CrossRefGoogle Scholar
  83. 81.
    -, and -. The comparative value of different test organisms in the microbiological assay of the B vitamins. W. Va. Agr. Exp. Sta. Bull. 319. 1945.Google Scholar
  84. 82.
    Lochhead, A. G.,et al. Production of claviformin by soil penicillia. Canad. Jour. Res. (E)24: 1–9. 1946.Google Scholar
  85. 83.
    Lockwood, L. B. Rhisopus oryzae: spore germination, early growth and fermentation. Rep. Proc. III Congr. Microbiol. 1939, p. 229. 1940.Google Scholar
  86. 84.
    —, andReeves, M. D. Some factors affecting the production of itaconic acid byAspergillus terreus. Arch. Biochem.6: 455–469. 1945.Google Scholar
  87. 85.
    —, andNelson, G. E. N. Some factors affecting the production of itaconic acid byAspergillus terreus in agitated cultures. Arch. Biochem.10: 365–374. 1946.Google Scholar
  88. 86.
    Lohrmann, W. [The antagonistic action of magnesium against boron and mercury for some fungi]. [German]. Arch. Microbiol.11: 329–367. 1940.Google Scholar
  89. 87.
    Lorenz, W. Improvements relating to the production of organic acids by fermentation. Brit. Patent 517,793. 1940.Google Scholar
  90. 88.
    Menzel, A. E. O. et al. The isolation of gliotoxin and fumigacin from culture fitrates ofAspergillus fumigatus. Jour. Biol. Chem.152: 419–429. 1944.Google Scholar
  91. 89.
    Mezzadroli, G. [Procedure for the production of citric acid by fermentation of carbohydrates]. [French]. French Patent 833,- 631. 1938.Google Scholar
  92. 90.
    Moyer, A. J. andCoghill, R. D. The laboratory-scale production of itaconic acid byAspergillus terreus. Arch. Biochem.7: 167–183. 1945.Google Scholar
  93. 91.
    —— Penicillin. VIII. Production of penicillin in surface cultures. Jour. Bact.51: 57–78. 1946.Google Scholar
  94. 92.
    —— Penicillin. IX. The laboratory scale production of penicillin in submerged cultures byPenicillium notatum Westling (NRRL 832) Jour. Bact.51: 79–93. 1946.Google Scholar
  95. 93.
    Mulder, E. G. [The importance of copper for the growth of microorganisms and a microbiological method of estimation of soil copper available to plants]. [German]. Arch. Mikrobiol.10: 72–96. 1939.CrossRefGoogle Scholar
  96. 94.
    Mull, R. P., andNord, F. F. On the mechanism of enzyme action, Part 23. Structure and action of rubrofusarin fromFusarium graminearum Schwabe (Fgra) (Gibberella saubinattii) Arch. Biochem.4: 419–433. 1944.Google Scholar
  97. 95.
    Nagasako, S. [Applicability of biological reactions ofA. niger for microdetermination of heavy metals in blood]. [Japanese]. Japan Jour. Med. Sci. VII. Social Med. Hyg.3: (1–2). Proc. Japan Soc. Forensic Med. 23: 20. 1939. (Chem. Abst. 35: 5140).Google Scholar
  98. 96.
    Nakazawa, R., andSino, M. [Effect of irradiation on fermentative organisms. I. Morphological and biochemical characteristics of races ofA. niger produced by radium treatment]. [Japanese]. Jour. Agr. Chem. Soc. (Japan)14: 895–910. 1938.Google Scholar
  99. 97.
    —— [The action of Ra and x-rays on microorganisms. II. Production of acids by Ra irradiatedA. niger.] [Japanese]. Jour. Agr. Chem. Soc. (Japan)15: 547–52. 1939.Google Scholar
  100. 98.
    -, and -. Effect of radioactive substances on fermenting microorganisms. Rep. Proc. III Int. Cong. Microbiol. 1939. p. 753–754. 1940.Google Scholar
  101. 99.
    Negroni, P., andFischer, I. [Inhibiting action ofPenicillium notatum. I. Influence of nutritive source of C]. [Spanish]. Rev. Inst. Bact. “Carlos G. Malbran”12: 369–373. 1944.Google Scholar
  102. 100.
    Neuberg, C. The biochemistry of yeast. Ann. Rev. Biochem.15: 435–474. 1946.CrossRefGoogle Scholar
  103. 101.
    Nickerson, W. J. Inhibition of fungus respiration: a metabolic bio-assay method. Science103: 484–486. 1946.PubMedCrossRefGoogle Scholar
  104. 102.
    —, andChadwick, J. B. On the respiration of dermatophytes. Arch. Biochem.10: 81–100. 1946.Google Scholar
  105. 103.
    Nielsen, N. The growth substance demand of different fungi. Rep. Proc. III Int. Cong. Microbiol. 1939. p. 204. 1940.Google Scholar
  106. 104.
    Niklas, H., andToursel, O. [The determination of trace elements by means ofA. niger]. [German]. Bodenkunde u. Pflanzenernahr23: 357–360. 1941. (Chem. Abst. 36: 956).Google Scholar
  107. 105.
    Perlman, D. Factors affecting the production of citric acid byAspergillus niger. M.Sc. Thesis, Univ. Wis. 1943.Google Scholar
  108. 106.
    — Some effects of metallic ions on the metabolism ofAerobacter aerogenes. Jour. Bact.49: 167–175. 1945.Google Scholar
  109. 107.
    -. Penicillin production in submerged culture. Ph.D. Thesis, Univ. Wis. 1945.Google Scholar
  110. 108.
    —,et al. Production of citric acid from cane molasses. Arch. Biochem.11: 123–129. 1946.Google Scholar
  111. 109.
    —,et al. Effect of metallic ions on the production of citric acid byAspergillus niger. Arch. Biochem.11: 131–143. 1946.Google Scholar
  112. 110.
    — On the nutrition ofMemnoniella echinata andStachybotrys atra. Am. Jour. Bot.35: 36–41. 1948.CrossRefGoogle Scholar
  113. 111.
    -. Citric acid production by various strains ofAspergillus niger. Abst. Comm., IV Int. Cong. Microbiol. p. 201–202. 1947.Google Scholar
  114. 111a.
    — On the nutrition ofSclerotium delphinii. Am. Jour. Bot.35: 360–363 (1948).CrossRefGoogle Scholar
  115. 112.
    Pontovich, V. E. [Influence of potassium on the synthesis of proteins in fungi.] [Russian]. Bull. Acad. Sci. U.S.R.R. Biol. p. 191–203. 1942. (Chem. Abst. 37: 3122).Google Scholar
  116. 113.
    -. [Light and potassium in the development of molds]. [Russian]. Bull. Acad. Sci. U.S.S.R. Biol:612–21. 1945. (Chem. Abst. 40:5095).Google Scholar
  117. 114.
    Porges, N.,et al. Gluconic acid production. Repeated and re-use of submergedAspergillus niger by filtration. Ind. Eng. & Chem.33: 1065–1067. 1941.CrossRefGoogle Scholar
  118. 115.
    Pratt, R., andDufrenoy, J. (Letter to editor) Science105: 574. 1947.CrossRefGoogle Scholar
  119. 116.
    Ratajak, E. J. andOwens, H. S. Optimal condition for the hydrolysis of arabogalactan byAspergillus niger. Bot. Gaz.104: 329–337. 1942.CrossRefGoogle Scholar
  120. 117.
    Rawlings, F. N. Purification of sugar solutions. U.S. Patent 2,391,843. 1945.Google Scholar
  121. 118.
    — andShafor, R. W. Ionic exchangers: their application in cane and beet sugar juice purification. Sugar37: 1–6. 1942.Google Scholar
  122. 119.
    Rich, S., andHorsfall, J. G. Metal reagents as antisporulants. Phytopath.38: 22. 1948.Google Scholar
  123. 120.
    Rippel, A., andLohrmann, W. [Effect of nutrients and poisons]. [German]. Nachr. Ges. Wiss. Gottingen, Math.-Phys. Klasse. Fachgruppe VI (N.F.)3: 239–253. 1940. (Chem. Abst. 35: 5931).Google Scholar
  124. 121.
    Robbins, W. J. Growth substances in agar. Am. Jour. Bot.26: 772–778. 1939.CrossRefGoogle Scholar
  125. 122.
    Roberts, E. C.,et al. Penicillin B, an antibacterial substance fromPenicillium notatum. Jour. Biol. Chem.147: 47–57. 1943.Google Scholar
  126. 123.
    Robertson, M. E. Apparent stimulative effect on mold growth of a mercurial preparation. Nature151: 365. 1943.CrossRefGoogle Scholar
  127. 123a.
    Rogers, C. H. Growth ofPhymatotrichum omnivorum in solutions with varying amounts of certain mineral elements. Am. Jour. Bot.25: 621–624. 1938.CrossRefGoogle Scholar
  128. 124.
    Rubbo, S. D. The mode of action of 8-hydroxyquinoline—a biological approach. Abst. Comm., IV Int. Cong. Microbiol. p. 31–32. 1947.Google Scholar
  129. 125.
    Ryan, F. J.,et al. The tube method of measuring the growth rate ofNeurospora. Am. Jour. Bot.30: 784–799. 1943.CrossRefGoogle Scholar
  130. 126.
    Saunders, A. P., andSylvester, J. C. Synthetic media for the production of streptomycin. Abst. Am. Chem. Soc. Meeting, Chicago, Ill., Sept. 15–19, p. 9A-10A. 1947.Google Scholar
  131. 127.
    Schopfer, W. H. [Biosynthesis of biotin byPhycomyces blakesleeanus. New growth-factor for yeast]. [French]. Zeits. Vitaminf.14: 42–70. 1943.Google Scholar
  132. 128.
    -. Plants and vitamins. 1943.Google Scholar
  133. 129.
    — [Comments regarding Utiger’s article: Vitamin B1 studies of thePhycomyces growth test. Critical examination of its application]. [German]. Zeits. Vitaminf.18: 66–70. 1946.Google Scholar
  134. 130.
    —, andUtiger, H. [Sea water as a source of metallic catalysts for the culture of a microorganism]. [French]. Compt. Rend. Soc. Phys, et. Hist. Nat. (Geneva)58: 135–37. 1941.Google Scholar
  135. 131.
    Schulz, G. [The influence of a few heavy metals (Zn,Cd,Mn,Fe) on the chemical composition ofAspergillus niger.]. [German]. Planta27: 196–218. 1937.CrossRefGoogle Scholar
  136. 132.
    Shu, P., andJohnson, M. J. Citric acid production by submerged fermentation. Abst. Am. Chem. Soc. Meeting, Atlantic City, N. J., April 14–18, p 11A-12A. 1947.Google Scholar
  137. 133.
    —— Effect of the composition of the sporulation medium on citric acid production byAspergillus niger in submerged culture. Jour. Bact.54: 161–168. 1947.Google Scholar
  138. 133a.
    —— Citric acid production by submerged fermentation withAspergillus niger. Ind. Eng. & Chem.40: 1202–1205 (1948).CrossRefGoogle Scholar
  139. 133b.
    —— The interdependence of medium constituents in citric acid production by submerged fermentation. Jour. Bact.56: 577–585 (1948).Google Scholar
  140. 134.
    Singh, J. Effect of Hg on microorganisms. Cur. Sci.13: 236. 1944.Google Scholar
  141. 135.
    Sjolander, J. R. Factors affecting the production of citric acid in submerged mold cultures. B.A. Thesis, Univ. Wis. 1945.Google Scholar
  142. 136.
    Smit, Jan, andMulder, E. G. [Biological estimation of copper and magnesium in soils and plants]. [French]. Rec. Trav. Chim. Pays-Bas59: 623. 1940.Google Scholar
  143. 137.
    Starkey, R. L. andWaksman, S. A. Fungi tolerant to extreme acidity and high concentration of copper sulfate. Jour. Bact.45: 509–519. 1943.Google Scholar
  144. 138.
    Stefaniak, J. J.,et al. Pilot plant equipment for submerged production of penicillin. Ind. Eng. & Chem.38: 666–671. 1946.CrossRefGoogle Scholar
  145. 139.
    Steinberg, R. A. Effects of N compounds and trace elements on growth ofA. niger. Jour. Agr. Res.59: 731–748. 1939.Google Scholar
  146. 140.
    — Relation of carbon nutrition to trace element and accessory requirements ofA. niger. Jour. Agr. Res.59: 749–763. 1939.Google Scholar
  147. 141.
    — Action of some organic compounds on yield, sporulation, and starch formation ofAspergillus niger. Jour. Agr. Res.60: 765–773. 1940.Google Scholar
  148. 142.
    -. Relation of accessory substance and amino acid requirements to the C nutrition ofA. niger. Rep. Proc. III Int. Cong. Microbiol. 1939. p 486. 1940.Google Scholar
  149. 143.
    — Sulfur and trace element nutrition ofA. niger. Jour. Agr. Res.63: 109–127. 1941.Google Scholar
  150. 144.
    — Effect of trace elements on growth ofA. niger with amino acids. Jour. Agr. Res.64: 455–475. 1942.Google Scholar
  151. 145.
    — The process of amino acid formation from sugars inA. niger. Jour. Agr. Res.64: 615–633. 1942.Google Scholar
  152. 146.
    — Influence of carbon dioxide on response ofAspergillus niger to trace elements. Pl. Phys.17: 129–132. 1942.Google Scholar
  153. 147.
    — Use of microorganisms to determine essentiality of minor elements. Soil Sci.60: 185–189. 1945.CrossRefGoogle Scholar
  154. 148.
    — Dibasal (minimal salt, maximum yield) solution forAspergillus niger; acidity and magnesium optimum. Pl. Phys.20: 600–608. 1945.CrossRefGoogle Scholar
  155. 149.
    — Specificity of potassium and magnesium for growth ofAspergillus niger. Am. Jour. Bot.33: 210–214. 1946.CrossRefGoogle Scholar
  156. 150.
    Stiles, W. Trace elements in plants and animals. 1946.Google Scholar
  157. 151.
    Stokes, J. L.,et al. ANeurospora assay for pyridoxine. Jour. Biol. Chem.150: 17–24. 1943.Google Scholar
  158. 152.
    —,et al. Synthesis of pyridoxin by a “pyridoxinless” x-ray mutant ofNeurospora sitophila. Arch. Biochem.2: 235–245. 1943.Google Scholar
  159. 153.
    Stout, P. R., andArnon, D. I. Experimental methods for the study of the role of copper, manganese, and zinc, in the nutrition of higher plants. Am. Jour. Bot.26: 144–149. 1939.CrossRefGoogle Scholar
  160. 154.
    Texera, D. A. Production of antibiotic substances byFusaria. Phytopath.38: 70–81. 1948.Google Scholar
  161. 155.
    Thomas, W. D. Growth and variation of six physiologic races ofActinomyces scabies on different media. Phytopath.37: 319–331. 1947.Google Scholar
  162. 156.
    Thornberry, H. H. Nutrient requirements of an antibiotic soil fungus,S. griseus. Phytopath.36: 412. 1946.Google Scholar
  163. 157.
    — The role of minerals in production of streptomycin byStreptomyces griseus. Phytopath.38: 26. 1948.Google Scholar
  164. 158.
    Timmonin, M. I., andRouatt, J. W. Production of citrinin byAspergillus sp. of the candidus group. Canad. Jour. Pub. Health35: 80–88. 1944.Google Scholar
  165. 159.
    Utiger, H. andSchopfer, W. H. [Additional information on the symbiosis betweenRhodotorula rubra andMucor ramannianus. The role of metallic catalysts]. [French]. Compt. Rend. Soc. Phys. et Hist. Nat. (Geneva)58: 284–88. 1941. (Also mentioned in Schopfer (128) p. 249).Google Scholar
  166. 160.
    — [Studies of the vitamin B1 content of vegetables by means of thePhycomyces growth test]. [German]. Zeits. Vitaminf.18: 35–65. 1946.Google Scholar
  167. 161.
    Waksman, S. A., andFoster, J. W. The mechanism of lactic acid production byRhizopus. Jour. Bact.35: 70–71. 1938.Google Scholar
  168. 162.
    —,et al. Two antagonistic fungi,Aspergillus fumigatus andAspergillus clavatus, and their antibiotic substances. Jour. Bact.45: 233–248. 1943.Google Scholar
  169. 163.
    -, andKarow, E. O. Citric acid production by fermentation. U. S. Patent 2,394,031. 1946.Google Scholar
  170. 164.
    Waring, W. S., andWerkman, C. H. Growth of bacteria in an iron-free medium. Arch. Biochem.1: 303–310. 1943.Google Scholar
  171. 165.
    Weitz, F. W. Juice purification by ion exchange. Sugar38: 1–6. 1943.Google Scholar
  172. 166.
    Wickerham, L. J.,et al. The production of riboflavin byAshbya gossypii. Arch. Biochem.9: 95–98. 1946.Google Scholar
  173. 167.
    Woodruff, H. B. Production of streptomycin in stationary culture on liquid and solid substrate. Jour. Bact.54: 42. 1947.Google Scholar
  174. 168.
    - The bacteriological spectra and microbiological synthesis of the natural penicillins. Abst. Comm., IV Int. Cong. Microbiol. p 10–11. 1947.Google Scholar
  175. 169.
    Woodward, J. C.,et al. Treatment of corbohydrates for fermentation. Canad. Patent 422,142. 1944.Google Scholar
  176. 170.
    Worley, C. B. Synthetically produced substance B. Bot. Gaz.103: 391–396. 1941.CrossRefGoogle Scholar
  177. 171.
    — Agencies affecting the production of substance B byRhizopus suinus. Pl. Phys.16: 461–480. 1941.Google Scholar
  178. 172.
    Wyllie, J. Method for the rapid production of citrinin. Canad. Jour. Pub. Health36: 477–483. 1945.Google Scholar
  179. 173.
    Yoshimura, F. [The action of some heavy metals upon the production of catalase in aspergilli]. [Japanese]. Bot. Mag. (Tokyo)53: 125–128. 1939. (Biol. Abst. 13: 15779).Google Scholar
  180. 174.
    Zaldevar, J. P. The influence of FeCl3 and of ZnSO4 on the production of citric acid from cane sugar solutions by fermentation withAspergillus niger. Phillipine Agr.29: 738–752. 1941.Google Scholar
  181. 175.
    Zentmeyer, G. A. Inhibition of metal catalysis as a fungistatic mechanism. Science100: 294–295. 1944.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1949

Authors and Affiliations

  • D. Perlman
    • 1
  1. 1.Princeton

Personalised recommendations