Skip to main content
Log in

The nature of the fungicidal action of copper and sulfur

  • Published:
The Botanical Review Aims and scope Submit manuscript

Conclusions

In summarizing available information on the mechanism of the fungicidal action of copper it appears most likely that exudates, such as hydroxy and amino acids, produced from fungus spores react with the “insoluble” copper fungicides to form soluble toxic copper complexes. These copper complexes exert the direct fungicidal action and vary in composition, depending on the original fungicide and probably also the fungus. While this is the primary fungicidal action, it is supplemented by the copper brought into solution by atmospheric agencies and host plant exudates. These two agencies, however, likely play the most important role in phytotoxicity or host plant injury. Finally cumulative action is also a supplementary factor, though perhaps indistinguishable from and a part of the action by spore secretions or exudates.

In the case of the sulfur fungicides the various theories of mechanism of action are more or less mutually exclusive. The evidence favors action at a distance by means of the vapor, and that the vapor can react with the spore or other plant tissue to produce hydrogen sulfide, the active toxic agent. Hydrogen sulfide produced by action of the plant is probably of importance only in phytotoxicity.

The dosage-response curve is a valuable tool in the interpretation of the nature of fungicidal action and should aid in a better understanding of this intricate mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Barker, B. T. P. Investigations on the fungicidal action of sulphur. IV. Third progress report. Long Ashton Agr. & Hort. Res. Sta., Ann. Rep.1929: 130–148. 1929.

    Google Scholar 

  2. —, andC. T. Gimingham. The fungicidal action of Bordeaux mixture. Jour. Agr. Sci.4: 76–94. 1911.

    Google Scholar 

  3. et al. Sulphur as a fungicide. Long Ashton Agr. & Hort. Res. Sta., Ann. Rep.1919: 57–75. 1919.

    Google Scholar 

  4. Barratt, R. W., andJ. G. Horsfall. Fungicidal action of metallic alkyl bisdithiocarbamates. Conn. Agr. Exp. Sta., Bull. 508. 1947.

  5. Bedford, Duke of, andS. U. Pickering. Woburn Exp. Fruit Farm Rep.11: 1–190. 1910.

    Google Scholar 

  6. Bliss, C. T. The calculation of the dosage-mortality curve. Ann. App. Biol.22: 134–167. 1935.

    Article  CAS  Google Scholar 

  7. —. The toxicity of poisons applied jointly. Ann. App. Biol.26: 585–615. 1939.

    Article  CAS  Google Scholar 

  8. Curtis, L. C. The influence of guttation fluid on pesticides. Phytopath.34: 196–205. 1944.

    CAS  Google Scholar 

  9. Dimond, A. E. et al. Role of the dosage-response curve in the evaluation of fungicides. Conn. Agr. Exp. Sta., Bull.451: 635–667. 1941.

    Google Scholar 

  10. Doran, W. L. Laboratory studies of the toxicity of some sulphur fungicides. N. H. Agr. Exp. Sta., Tech. Bull. 19. 1922.

  11. Foster, A. A. Acceleration and retardation of germination of some vegetable seeds resulting from treatment with copper fungicides. Phytopath.37: 390–398. 1947.

    CAS  Google Scholar 

  12. Frear, D. E. H. Chemistry of insecticides and fungicides. 300 pp. 1942.

  13. Gaddum, J. H. Reports on biological standards. III. Methods of biological assay depending on a quantal response. Privy Coun. Med. Res. Coun. Spec. Rept. Ser.183: 1–46. 1933.

    Google Scholar 

  14. Gimincham, C. T. The action of carbon dioxide on Bordeaux mixture. Jour. Agr. Sci.4: 69–75. 1911.

    Article  Google Scholar 

  15. Goldsworthy, M. C., andE. L. Green. Availability of the copper of Bordeaux mixture residues and its absorption by the conidia ofSclerotinia fructicola. Jour. Agr. Res.52: 517–533. 1936.

    CAS  Google Scholar 

  16. —. Effect of low concentrations of copper on germination and growth of conidia ofSclerotinia fructicola andGlomerella cingulata. Jour. Agr. Res.56: 489–505. 1938.

    CAS  Google Scholar 

  17. et al. Fungicidal and phytocidal properties of some metal dialkyl dithiocarbamates. Jour. Agr. Res:66: 277–291. 1943.

    CAS  Google Scholar 

  18. Goodwin, W., andH. Martin. The action of sulphur as a fungicide and as an acaricide. Part I. Ann. App. Biol.15: 623–638. 1928.

    Article  CAS  Google Scholar 

  19. —. The action of sulphur as a fungicide and as an acaricide. Part II. Ann. App. Biol.16: 93–103. 1929.

    Article  CAS  Google Scholar 

  20. Horsfall, J. G. Fungicides and their action. 239 pp. 1945.

  21. Liming, O. N. The relation of pentathionic acid and its component constituents to the toxicity of sulphur fungicides. Phytopath.22: 143–164. 1932.

    CAS  Google Scholar 

  22. —. The preparation and properties of pentathionic acid and its salts; its toxicity to fungi, bacteria and insects. Phytopath.23: 155–174. 1933.

    CAS  Google Scholar 

  23. —, andH. C. Young. Toxicity of sulphur to spores ofSclerotinia cinerea as affected by the presence of pentathionic and other sulphur acids. Jour. Agr. Res.40: 951–962. 1930.

    CAS  Google Scholar 

  24. Lin, C. K. Germination of the conidia ofSclerotinia fructicola, with special reference to the toxicity of copper. N. Y. [Cornell] Agr. Exp. Sta., Mem.233: 1–33. 1940.

    Google Scholar 

  25. McCallan, S. E. A. Studies on fungicides. III. The solvent action of spore excretions and other agencies on protective copper fungicides. N. Y. [Cornell] Agr. Exp. Sta., Mem.128: 25–79. 1930.

    CAS  Google Scholar 

  26. —. Characteristic curve for action of copper sulfate on the germination of spores ofSclerotinia fructicola andAlternaria oleracea. Cont. Boyce Thompson Inst.15: 77–90. 1948.

    CAS  Google Scholar 

  27. —, andF. R. Weeeon. Toxicity of ammonia, chlorine, hydrogen cyanide, hydrogen sulphide, and sulphur dioxide gases. II. Fungi and bacteria. Cont. Boyce Thompson Inst.11: 331–342. 1940.

    CAS  Google Scholar 

  28. et al. An analysis of factors causing variation in spore germination tests of fungicides. III. Slope of toxicity curves, replicate tests, and fungi. Cont. Boyce Thompson Inst.12: 49–78. 1941.

    CAS  Google Scholar 

  29. —, andF. Wilcoxon. The fungicidal action of sulphur. II. The production of hydrogen sulphide by sulphured leaves and spores and its toxicity to spores. Cont. Boyce Thompson Inst.3: 13–38. 1931.

    CAS  Google Scholar 

  30. Marsh, P. B. Salts as antidotes to copper in its toxicity to the conidia ofSclerotinia fructicola. Phytopath.35: 54–61. 1945.

    CAS  Google Scholar 

  31. Marsh, R. W. Investigations on the fungicidal action of sulphur. III. Studies on the toxicity of mlphuretted hydrogen and on the interaction of sulphur with fungi. Jour. Pom. & Hort. Sci.7: 237–250. 1929.

    CAS  Google Scholar 

  32. Martin, H. Studies upon the copper fungicides. I. The interaction of copper sulphate with calcium hydroxide. Ann. App. Biol.19: 98–120. 1932.

    Article  CAS  Google Scholar 

  33. -. The scientific principles of plant protection. 3rd ed. 385 pp. 1940.

  34. —, andE. S. Salmon. The fungicidal properties of certain spray-fluids. IX. The fungicidal properties of the products of hydrolysis of sulphur. Jour. Agr. Sci.22: 595–616. 1932.

    CAS  Google Scholar 

  35. et al. Studies upon the copper fungicides. V. A critical examination of the fungicidal value of copper compounds. Ann. App. Biol.29: 412–438. 1942.

    Article  CAS  Google Scholar 

  36. Millardet, A., etU. Gayon. Recherches nouvelles sur l’action que les preparations cuivrenses exercent sur le Peronospora de la vigne. Jour. d’Agr. Prat.51: 123–139, 156–161. 1887.

    Google Scholar 

  37. Montgomery, H. B. S., andH. Shaw. Behaviour of thiuram sulphides, etc., in spore germination tests. Nature151: 333. 1943.

    Article  CAS  Google Scholar 

  38. Parker-Rhodes, A. F. Studies on the mechanism of fungicidal action. I. Preliminary investigation of nickel, copper, zinc, silver, and mercury. Ann. App. Biol.28: 389–405. 1941.

    Article  CAS  Google Scholar 

  39. —. Studies on the mechanism of fungicidal action. II. Elements of the theory of variability. Ann. App. Biol.29: 126–135. 1942.

    Article  CAS  Google Scholar 

  40. —. Studies on the mechanism of fungicidal action. III. Sulphur. Ann. App. Biol.29: 136–143. 1942.

    Article  CAS  Google Scholar 

  41. —. Studies on the mechanism of fungicidal action. IV. Mercury. Ann. App. Biol.29: 404–411. 1942.

    Article  CAS  Google Scholar 

  42. —. Studies on the mechanism of fungicidal action. V. Non metallic and sodium dithiocarbamic acid derivatives. Ann. App. Biol.30: 170–179. 1943.

    Article  CAS  Google Scholar 

  43. —. Studies on the mechanism of fungicidal action. VI. Water. Ann. App. Biol.30: 372–379. 1943.

    Article  CAS  Google Scholar 

  44. Roach, W. A., andM. D. Glvnne. The toxicity of certain sulphur compounds toSynchytrium endobioticum, the fungus causing wart disease of potatoes. Ann. App. Biol.15: 168–190. 1928.

    Article  CAS  Google Scholar 

  45. Sempio, C. Sulla interpretazione del meccanismo intimo di azione dello solfo come anticrittogamico. Mem. della Reale Accad. d’Italia 3. Biol. No.2: 1–30. 1932.

  46. Swingle, W. T. Bordeaux mixture:its chemistry, physical properties, and toxic effects on fungi and algae. U. S. Dept. Agr., Div. Veg. Phys. Path. Bull.9: 1–37. 1896.

    Google Scholar 

  47. Thatcher, R. W., andL. R. Streeter. The adherence to foliage of sulfur in fungicidal dusts and sprays. N. Y. [Geneva] Agr. Exp. Sta., Tech. Bull.116: 1–18. 1925.

    Google Scholar 

  48. Wain, R. L., andE. H. Wilkinson. Studies upon the copper fungicides. VI. The solution of copper from Bordeaux and Burgundy mixtures. Ann. App. Biol.30: 379–391. 1943.

    Article  CAS  Google Scholar 

  49. —. Studies upon the copper fungicides. VII. The solution of copper from dressings on pea seeds. Ann. App. Biol.32: 240–243. 1945.

    Article  CAS  Google Scholar 

  50. —. Studies upon the copper fungicides. VIII. The penetration of copper into germinating peas. Ann. App. Biol.32: 243–247. 1945.

    Article  CAS  Google Scholar 

  51. —. Studies upon the copper fungicides. IX. Investigations with exudates from fungus spores. Ann. App. Biol.33: 401–405. 1946.

    Article  Google Scholar 

  52. Wilcoxon, F., andS. E. A. McCallan. The fungicidal action of sulphur. I. The alleged rôle of pentathionic acid. Phytopath.20: 391–417. 1930. (Also in Contr. Boyce Thompson Inst.2: 389–415. 1930.)

    CAS  Google Scholar 

  53. —. The fungicidal action of sulphur. III. Physical factors affecting the efficiency of dusts. Contr. Boyce Thompson Inst.3: 509–528. 1931.

    CAS  Google Scholar 

  54. —. The fungicidal action of sulphur. IV. Comparative toxicity of sulphur, selenium, and tellurium. Contr. Boyce Thompson Inst.4: 415–424. 1932.

    CAS  Google Scholar 

  55. —. The weathering of Bordeaux mixture. Contr. Boyce Thompson Inst.9: 149–159. 1938.

    CAS  Google Scholar 

  56. —. Theoretical principles underlying laboratory toxicity tests of fungicides. Contr. Boyce Thompson Inst.10: 329–338. 1939.

    CAS  Google Scholar 

  57. Williams, R. C., andH. C. Young. The toxic property of sulfur, chemistry in relation to toxic factors. Ind. & Eng. Chem.21: 359–362. 1929.

    Article  CAS  Google Scholar 

  58. Young, H. C. The toxic property of sulphur. Ann. Missouri Bot. Gard.9: 403–435. 1922.

    Article  CAS  Google Scholar 

  59. —, andR. C. Williams. Pentathionic acid, the fungicidal factor of sulphur. Science67: 19–20. 1928.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCallan, S.E.A. The nature of the fungicidal action of copper and sulfur. Bot. Rev 15, 629–643 (1949). https://doi.org/10.1007/BF02861716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861716

Keywords

Navigation