Advertisement

American Potato Journal

, Volume 47, Issue 12, pp 457–468 | Cite as

Study of hydrogen peroxide, potato enzymes and blackspot

  • M. L. Weaver
  • E. Hautala
Article

Abstract

The rate of oxidation of tyrosine, p-cresol and catechol by potato enzyme diminished as H2O2 concentration increased. By contrast, the rate of oxidation of chlorogenic acid in the presence of H2O2 increased. Bovine catalase destroyed H2O2 and thus effectively prevented either H2O2-induced inhibition or acceleration of oxidation of the four substrates by potato enzyme. Horseradish peroxidase in the presence of H2O2 did not oxidize either monophenol, but oxidized both polyphenols. Possible association of H2O2, peroxidase and catalase with blackspot susceptibility is discussed.

Keywords

Catalase Catechol H202 Chlorogenic Acid Russet Burbank Potato 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

La proporcion de oxidación de tyrosina, p-cresol y catechol por un enzima de la papa disminuyo a medida que la concentración del H2O2 aumentó. En contraste, la proporción de oxidación del ácido clorogenico aumento en presencia del H2O2. Catalase bovinadestruyo el H2O2 y as previeno efectivamente la inhibición del H2O2 inducido o la acceleración de oxidación de los cuatro substratos por el enzima de la papa. Peroxidasa del rábano picante, en presencia de H2O2, no oxido el monofenol, pero si (oxido) ambos polifenoles. Se discute la posible asociación del H2O2, peroxidasa, y catalasa con la susceptibilidad a la mancha negra del tubérculo (black spot).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Amla, B. L. and F. J. Francis. 1960. Alcohol formation and respiration rates in prepeeled potatoes. Proc. Amer. Hort. Soc. 75: 537–544.Google Scholar
  2. 2.
    Balls, A. K. and W. S. Hale. 1935. Peroxidase in the darkening of apples. Ind. Eng. Chem. 27: 335–337.CrossRefGoogle Scholar
  3. 3.
    Bordner, C. A. and J. M. Nelson. 1939. On the oxidation of p-cresol by means of tyrosinase. J. Amer. Chem. Soc. 61: 1507–1513.CrossRefGoogle Scholar
  4. 4.
    Clark, W. L., N. Mondy, K. Bedrosian, R. A. Ferrari and C. A. Michon. 1957. Phenolic content and enzymatic activity of two varieties of potatoes. 1. Preliminary report. Food Technol. 11: 297–301.Google Scholar
  5. 5.
    Chance, B. 1951. Enzyme-substrate compounds.In Advances in Enzymology and Related Subjects of Biochemistry. F. F. Nord (ed.) 12: 153–190.Google Scholar
  6. 6.
    Chance, B. 1952. The state of catalase in the respiring cell. Science 16: 202–203.CrossRefGoogle Scholar
  7. 7.
    Dawson, C. R. and B. J. Ludwig. 1938. On the mechanism of the catecholtyrosine of reaction. II. The hydrogen peroxide question. J. Amer. Chem. Soc. 60: 1617–1621.CrossRefGoogle Scholar
  8. 8.
    Gagnon, M., W. M. Hunting and W. B. Esselen. 1959. New method for catalase determination. Anal. Chem. 31: 144–146.CrossRefGoogle Scholar
  9. 9.
    Haskins, F. A. 1955. Changes in the activities of several enzymes during germination and seedling development in corn (Zea Mays L.). Plant Physiol. 30: 74–78.PubMedGoogle Scholar
  10. 10.
    Howard, F. D., J. F. Laborde, M. Yamaguchi and J. E. Knott. 1961. Studies of internal black spot of California-grown White Rose potato tubers. Proc. Amer. Hort. Sci. 78: 406–412.Google Scholar
  11. 11.
    Keilin, D. and E. F. Hartree. 1936. Coupled oxidation of alcohol. Proc. Roy. Soc. B. 119: 141–159.CrossRefGoogle Scholar
  12. 12.
    Kunkel, R. and W. H. Gardner. 1959. Black spot of Russet Burbank potatoes. Proc. Amer. Soc. Hort. Sci. 73: 436–444.Google Scholar
  13. 13.
    Milas, N. A. 1932. Auto-oxidation. Chem. Rev. 10: 295–364.CrossRefGoogle Scholar
  14. 14.
    Mondy, N. I., B. P. Klein and L. I. Smith. 1960. The effect of maturity and storage on phenolic content, enzymatic activity and discoloration of potatoes. Food Res. 25: 693–705.Google Scholar
  15. 15.
    Mulder, E. G. 1949. Mineral nutrition in relation to the biochemistry and physiology of potatoes. I. Effect of nitrogen, phosphate, potassium, magnesium, and copper nutrition in the tyrosine content and tyrosine activity with particular reference to blackening of the tubers. Plant and Soil 2: 59–121.CrossRefGoogle Scholar
  16. 16.
    Onslow, M. W. and M. E. Robinson. 1926. Oxidising enzymes. IX. On the mechanism of plant oxidases. Biochem. J. 20: 1138–1145.PubMedGoogle Scholar
  17. 17.
    Onslow, M. W. and M. E. Robinson. 1928. Oxidizing enzymes. X. The relationship of oxygenase to tyrosinase. Biochem. J. 22: 1327–1331.PubMedGoogle Scholar
  18. 18.
    Ponting, J. D. and M. A. Joslyn. 1948. Ascorbic acid oxidation and browning in apple tissue extracts. Arch. Biochem. 19: 47–63.PubMedGoogle Scholar
  19. 19.
    Pugh, C. E. M. and H. S. Raper. 1927. The action of tyrosinase on phenols with some observation on the classification of oxidases. Biochem. J. 21: 1370–1383.PubMedGoogle Scholar
  20. 20.
    Pugh, C. E. M. 1929. The activation of certain oxidase preparations. Part I. Activation by peroxidases. Part II. Activation of tyrosinase. Biochem. J. 23: 456–471.PubMedGoogle Scholar
  21. 21.
    Pugh, C. E. M. 1930. The mode of action of tyrosinase. Biochem. J., 24: 1442–1455.PubMedGoogle Scholar
  22. 22.
    Raper, H. S. 1927. The tyrosinase-tyrosine reaction. VI. Production from tyrosine of 5:6-dihydroxyindole and 5:6-dihydroxyindole-2-carboxylic acid—the precursors of melanin. Biochem. J. 21: 89–96.PubMedGoogle Scholar
  23. 23.
    Richter, D. 1934. The action of inhibitors in the catechol oxidase of potatoes. Biochem. J. 28: 901–908.PubMedGoogle Scholar
  24. 24.
    Scudder, W. T., W. C. Jacob and H. C. Thompson. 1950. Varietal susceptibility and the effect of potash in the incidence of blackspot in potatoes. Proc. Amer. Soc. Hort. Sci. 56: 343–348.Google Scholar
  25. 25.
    Swan, G. A. and D. Wright. 1954. A study of the evolution of carbon dioxide during melanin formation including the use of 2-(3:4-dehydroxyphenyl) [1-14C]-and 2-(3:4-dehydroxyphenyl) [2-14C]-ethylamine. J. Chem. Soc. (London) 381–384.Google Scholar
  26. 26.
    Tolbert, N. E., A. Oeser, T. Kisaki, R. H. Hageman and R. K. Yamazaki. 1968. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem. 243: 5179–5184.PubMedGoogle Scholar
  27. 27.
    Tolbert, N. E., A. Oeser, R. K. Yamazaki, R. H. Hageman and J. Kisaki. 1969. A survey of plants for leaf peroxisomes. Plant Physiol. 44: 135–147.PubMedGoogle Scholar
  28. 28.
    Weaver, M. L., 1968. Theories for blackspot susceptibility in potatoes: Old and New. Proc. 18th National Potato Utilization Conference, Corvallis, Oregon. July 30–August 2, pp. 60–64.Google Scholar
  29. 29.
    Weaver, M. L., R. C. Brown and H. A. Steen. 1968. The association of copper with tyrosinase activity and internal discoloration (blackspot) in Russet Burbank potatoes. Amer. Potato J. 45: 132–138.Google Scholar
  30. 30.
    Weaver, M. L. and E. Hautala. 1969. Studies on phenolase and internal discoloration (blackspot) in Russet Burbank potatoes. Amer. Pot. J. 46: 259–267.Google Scholar
  31. 31.
    Wright, N. W. 1957. Blue spotting of potato tubers in British Columbia. Plant Disease Report. 41: 600–611.Google Scholar

Copyright information

© Springer 1970

Authors and Affiliations

  • M. L. Weaver
  • E. Hautala
    • 1
  1. 1.Western Regional Research Laboratory, Agricultural Research ServiceU.S. Department of AgricultureAlbany

Personalised recommendations