Advertisement

Economic Botany

, Volume 50, Issue 2, pp 151–166 | Cite as

Berry productivity and molluscicidal saponin yield ofPhytolacca Dodecandra (Phytolaccaceae) under different sunlight, watering and nutrient conditions

  • Jerikias Ndamba
  • Ian Robertson
  • Else Lemmich
  • Stephen K. Chandiwana
  • Peter Furu
  • Per Mølgaard
Article

Abstract

The cultivation ofPhytolacca dodecandra has been studied in Zimbabwe in order to initiate local production of the berries from which molluscicidal saponins can be extracted and used in schistosomiasis control programs. The effect of shading, water and nutrient type on growth and berry yield of an imported Ethiopian and a Zimbabwean cultivar were monitored. The molluscicidal potency and saponin concentration of the aqueous extracts of berries, harvested at the full grown, unripe development stage, were determined. There was a marked seasonal variation in berry production with both cultivars being highly productive in the dry season. The best growth and the highest berry yield was obtained with plants grown in full sunlight, under irrigation and with application of cattle manure. The Ethiopian cultivar showed in general better growth and higher berry yield than the Zimbabwean cultivar. Cultivation in shade gave a substantially lower berry yield and saponin concentration in both cultivars, compared to full sunlight. Irrigation was beneficial to the berry yield in both cultivars but lowered the saponin concentration in berries of the Ethiopian cultivar. However, it did not counteract the advantage of irrigation on the total yield. Addition of manure did significantly increase the growth and the berry yield of both cultivars compared to fertilizer application and to the control. The saponin concentration was in general lower with addition of manure, with exception of irrigated Ethiopian plants. The combination of cattle manure and irrigation resulted in the highest saponin yield. Although the two cultivars had different saponin patterns, these patterns and the relative proportions of the saponins were constant, irrespective of the treatments.

Key Words

Phytolacca dodecandra molluscicide, plant schistosomiasis monodesmosidic saponins berry yield cultivation methods 

Production de baies et rendement de saponines de la molluscicide végétale Phytolacca dodecandra (Phytolaccaceae) influencés de soleil, d’irrigation et d’engraissage

Resumen

Un extrait aqueux des baies de Phytolacca dodecandra contient des saponines toxiques á l’égard des mollusques, hôtes intermédiaires de la maladie tropique parasitaire schistosomiase. Cette plante a été sélectionnée comme la meilleur pour produire des matériaux molluscicides dans l’utilisation de programmes sanitaires dans le but de controller la schistosomiase. La culture de deux cultivars dePhytolacca dodecandra a été étudiée au Zimbabwe pour évaluer les meilleures circonstances de culture. Le plus grand rendement de baies et de saponines a été obtenu d’une culture ensoleillée, d’irrigation et d’engraissage avec des engrais d’animaux domestiques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aubert, S., M. C. Daunay, and E. Pochard. 1989. Steroidic saponins from eggplantSolarium melongema L II. Effects of cultural conditions genotypes and parthenocarpy. Agronomie Paris 9:752–758.Google Scholar
  2. Bernath, J. 1986. Production ecology of secondary plant products. Pages 185–234in L. E. Craker and J. E. Simon, eds., Herbs spices and medicinal plants. Recent advances in botany, horticulture and pharmacology. Volume 1. Oryx Press.Google Scholar
  3. Boyer, J. S. 1982. Plant productivity and environment. Science 218:443–448.PubMedCrossRefGoogle Scholar
  4. Chandiwana, S. K., N. O. Christensen, and F. Frandsen. 1987. Seasonal patterns in the transmission ofSchistosoma haematobium, S. matthei, andS. mansoni in the highveld region of Zimbabwe. Acta Tropica 44:433–444.PubMedGoogle Scholar
  5. Chimbelu, E. G., and M. A. Shehata. 1987. A review of research in Zambia onPhytolacca dodecandra (Endod). Pages 109–126in L. Makhubu, A. Lemma, and D. Heyneman, eds., Endod II (Phytolacca dodecandra); Report of the Second International Workshop on Endod,Phytolacca dodecandra, Mbabane, Swaziland, April, 1986. Council on International and Public Affairs, New York.Google Scholar
  6. Defago, G. 1977. The function of saponins in the resistance of plants to parasitic fungi. Bulletin de la Societe Botanique Suisse 87:79–132.Google Scholar
  7. Donald, C. M., and J. Hamblin. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy 28:361–405.CrossRefGoogle Scholar
  8. Fluck, H. 1954. The influence of the soil on the content of active principles in medicinal plants. Journal of Pharmacy and Pharmacology 6:153–163.PubMedGoogle Scholar
  9. Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Advances in Phytochemistry 18: 273–320.Google Scholar
  10. Kawanishi, F., Y. Nagaoka, H. Watanabe, H. Oshio, and K. Nakamoto. 1983. Cultivation ofBupleurumfalcatum. Journal of the Takeda Research Laboratories 42:57–63.Google Scholar
  11. Lemma, A. 1965. A preliminary report on the molluscicidal property of endod (Phytolacca dodecandra). Ethiopian Medical Journal 3:187–190.Google Scholar
  12. Litchfleld, J. T.,and F. Wilcoxon. 1949. A simplified method of evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics 96:99–113.Google Scholar
  13. Lugt, C. B. 1976. The cardiac-glycoside composition of differentDigitalis purpurea populations. Pharmacological Weekbulletin 111:441–445.Google Scholar
  14. —. 1981.Phytolacca dodecandra berries as a means of controlling bilharzia transmitting snails. Litho Printers, Addis Ababa.Google Scholar
  15. -. 1987. Feasability of growth and production of molluscicidal plants. Pages 231–244in K. E. Mott, ed., Plant Molluscicides. UNDP/World Bank/ WHO Special Program for Research and Training in Tropical Diseases. John Wiley & Sons Ltd.Google Scholar
  16. Marston, A., and K. Hostettmann. 1987. Antifungal, molluscicidal and cytotoxic compounds from plants used in traditional medicine. Page 27in K. Hostettmann and P. J. Lea, eds., Proceedings of the Phytochemical Society of Europe, No. 27: Biologically active natural products. Oxford Science publications, Clarendon Press, Oxford.Google Scholar
  17. McDermitt, D. K., and D. K. Loomis. 1981. Elemental composition of biomass and its relation to energy content, growth efficiency and growth yield. Annales of Botany 48:275–290.Google Scholar
  18. Ndamba, J. 1993. Agronomic and other factors that influence the yield, molluscicidal potency and saponin content of the berries ofPhytolacca dodecandra. Ph.D. thesis. Royal Danish School of Pharmacy, Copenhagen, 113 pp.Google Scholar
  19. —,and S. K. Chandiwana. 1988. The geographical variation in the molluscicidal potency ofPhytolacca dodecandra in Zimbabwe. Tropical and Geographical Medicine 40:34–38.PubMedGoogle Scholar
  20. —, —,and N. Makaza. 1989. The use ofPhytolacca dodecandra berries in the control of trematode-transmitting snails in Zimbabwe. Acta Tropica 46:303–309.PubMedCrossRefGoogle Scholar
  21. —,E. Lemmich, and P. Mølgaard. 1994. In vestigation of the diurnal, ontogenetic and seasonal variation in the molluscicidal saponin content ofPhytolacca dodecandra aqueous berry extracts. Phytochemistry 35:95–99.PubMedCrossRefGoogle Scholar
  22. Parkhurst, R. M., B. M. Mthupha, Y. S. Liang, J. I. Bruce, J. D. H. Lambert, T. L. Collier, J. W. ApSimon, L. W. Yohannes, G. E. Heath, W. O. Jones, J. K. Stobaeus, and L. P. Makhubu. 1989. The molluscicidal activity ofPhytolacca dodecandra. 1. Location of the activating esterase. Biochemical and Biophysical Research Communication 158:436–439.CrossRefGoogle Scholar
  23. —,D. W. Thomas, W. A. Skinner, and L. W. Cary. 1973a. Molluscicidal saponins ofPhytolacca dodecandra: Lemmatoxin-C. Indian Journal of Chemistry 11:1192–1195.Google Scholar
  24. —, —, —, and —. 1973b. Molluscicidal saponins ofPhytolacca dodecandra: Olenaoglycotoxin-A. Phytochemistry 12:1437–1442.CrossRefGoogle Scholar
  25. —, —, —, and —. 1974. Mollusicidal saponins ofPhytolacca dodecandra: Lemmatoxin. Canadian Journal of Chemistry 52:702–705.CrossRefGoogle Scholar
  26. Sniff, C. J., and V. de Clarke. 1967. The effect of snail surveillance in natural waterways on the transmission ofSchistosoma haematobium in Rhodesia. Central African Journal of Medicine 13:133–137.Google Scholar
  27. Small, E., M. Jurzysta, and C. Nozzolillo. 1990. The evaluation of hemolytic saponin content in wild and cultivated alfalfa (Medicago sativa, Fabaceae). Economic Botany 44:226–235.Google Scholar
  28. Tallarida, R. J., and R. B. Murray. 1981. Manual of pharmacologic calculations with computer programs. Springer-Verlag, New York.Google Scholar
  29. Thiilborg, S. T., S. B. Christensen, C. Cornett, C. E. Olsen, and E. Lemmich. 1993. Molluscicidal saponins fromPhytolacca dodecandra. Phytochemistry 32:1167–1171.CrossRefGoogle Scholar
  30. —, —, —, —, and —. 1994. Molluscicidal saponins from a Zimbabwean strain ofPhytolacca dodecandra. Phytochemistry 36: 753–759.PubMedCrossRefGoogle Scholar
  31. Vetter, J., and E. Haraszri. 1987. Haemolytic saponin content of herbage. Acta Botanica Hungarica 33:431–436.Google Scholar
  32. Webbe, G., ed. 1987. The toxicology of molluscicides. International Encyclopedia of Pharmacology and Therapeutics Section 125. Pergamon Press, Oxford.Google Scholar
  33. WHO 1965. Molluscicide screening and evaluation. Bulletin of the World Health Organization 33:567–581.Google Scholar
  34. —. 1983. The control of schistosomiasis. Report of a WHO Expert Committee. WHO Technical Report Series No. 728. WHO Geneva.Google Scholar
  35. Wolde-Yohannes, L. 1983. Past and ongoing agrobotanical studies ofPhytolacca dodecandra (Endod) in Ethiopia. Pages 125–132in A. Lemma, D. Heyneman, and S. M. Silangwa, eds.,Phytolacca dodecandra (Endod). Towards controlling transmission of schistosomiasis with the use of a natural product. Final Report of the International Work shop, Lusaka, Zambia. Tycooly International Publishing Ltd., Dublin.Google Scholar
  36. —,and H. Kloos. 1989. Agronomic and molluscicidal characteristics of three types of endod (Phytolacca dodecandra). Ethiopian Journal of Agricultural Science 11:25–33.Google Scholar

Copyright information

© The New York Botanical Garden 1996

Authors and Affiliations

  • Jerikias Ndamba
    • 1
  • Ian Robertson
    • 2
  • Else Lemmich
    • 3
  • Stephen K. Chandiwana
    • 1
  • Peter Furu
    • 4
  • Per Mølgaard
    • 3
  1. 1.Blair Research LaboratoryCauseway, HarareZimbabwe
  2. 2.Department of Crop ScienceUniversity of ZimbabweHarareZimbabwe
  3. 3.Royal Danish School of PharmacyUniversitetsparken 2CopenhagenDenmark
  4. 4.Danish Bilharziasis LaboratoryCharlottenlundDenmark

Personalised recommendations