The Botanical Review

, Volume 11, Issue 7, pp 357–397 | Cite as

Quantitative bioassay of fungicides in the laboratory

  • James G. Horsfall


Botanical Review Spore Germination Germ Tube Fungicidal Action Threshold Dose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Jour. Econ. Ent.18: 265–267.Google Scholar
  2. 2.
    American Phytopathological Society Committee on Standardization of Fungicidal Tests. 1943. Definitions of fungicide terms. The slide-germination method of evaluating protectant fungicides. Phytopath.33: 624–626, 627–632.Google Scholar
  3. 3.
    Anderson, J. A. 1934. Studies on the nature of rust resistance in wheat. VI. Effect of hydrogen-ion concentration, phenolic compounds, and host extracts on the germination of urediniospores ofPuccinia graminis tritici, form 21. Canad. Jour. Res.11: 667–686.Google Scholar
  4. 4.
    Bateman, E. 1933. The effect of concentration on the toxicity of chemicals to living organisms. U. S. Dept. Agr., Tech. Bul.346.Google Scholar
  5. 5.
    Bertolet, E. C. 1943. Observations on soil burial procedures. Symp. Am. Soc. Test. Materials [Mim.].Google Scholar
  6. 6.
    Bliss, C. I. 1934. The method of probits. Science.79: 38–39.PubMedCrossRefGoogle Scholar
  7. 7.
    — andM. Cattell. 1943. Biological assay. Ann. Rev. Physiol.5: 479–539.CrossRefGoogle Scholar
  8. 8.
    — andH. P. Marks. 1939. The biological assay of insulin. II. The estimation of drug potency from a graded response. Quart. Jour. Pharm. & Pharmacol.12: 182–205.Google Scholar
  9. 9.
    Bobkov, S. D. 1938. A measurement of the electric charge of dust insecticides and its effect upon the efficiency of preparations. Summary of the scientific research work of the Institute of Plant Protection for the year 1936. Part III. Viruses and bacterioses, biological method, chemical method and mechanisation: 88–91. [Russian.] [Abst. Rev. Appl. Ent. A 27: 309–310.1939.]Google Scholar
  10. 10.
    Brown, W. 1922. On the germination and growth of fungi at various temperatures and in various concentrations of oxygen and of carbon dioxide. Ann. Bot.36: 257–283.Google Scholar
  11. 11.
    Carleton, M. A. 1893. Studies in the biology of the Uredineae. I. Notes on germination. Bot. Gaz.18: 447–457.CrossRefGoogle Scholar
  12. 12.
    Churchman, J. W. 1923. The mechanism of selective bacteriostasis. Proc. Nat. Acad. Sci.9: 78–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Clayton, E. al. 1943. Fungicidal tests on blue mold (Peronospora tabacina) of tobacco. Jour. Agr. Res.66: 261–276.Google Scholar
  14. 14.
    Doran, W. L. 1922. The effect of external and internal factors on the germination of fungous spores. Bull. Torr. Bot. Club49: 313–340.CrossRefGoogle Scholar
  15. 15.
    Dimond, A. E. 1942. The reversal effect: why fungicides change in rank in repeated field tests. Phytopath.32: 3.Google Scholar
  16. 16.
    et al. 1941. Role of dosage-response curve in the evaluation of fungicides. Conn. Agr. Exp. Sta., Bul.451: 635–667.Google Scholar
  17. 17.
    Eidmann, H. andW. Berwig. 1928. Untersuchungen über physikalische Eigenschaften, insbesondere die Haftfähigheit, von Arsenbestäubungsmitteln. Forstwiss. Centralb.1: 529–542, 575–586, [Abst. Rev. Appl. Ent. A 17: 10. 1929.]Google Scholar
  18. 18.
    Evans, A. C. andH. Martin. 1935. The incorporation of direct with protective insecticides and fungicides. I. The laboratory evaluation of water-soluble wetting agents as constituents of combined washes. Jour. Pom. & Hort. Sci.13: 261–292Google Scholar
  19. 19.
    Eyre, J. al. 1919. The fungicidal properties of certain sprayfluids. Jour. Agr. Sci.9: 283–307.Google Scholar
  20. 20.
    Ezekiel, W. N. 1938. Evaluation of some soil fungicides by laboratory tests withPhymatotrichum omnivorum. Jour. Agr. Res.56: 553–578.Google Scholar
  21. 21.
    Fajans, E. andH. Martin. 1937. The incorporation of direct with protective fungicides and insecticides. II. The effects of spray supplements on the retention and tenacity of protective deposits. Jour. Pom. & Hort. Sci.15: 1–24.Google Scholar
  22. 22.
    Falck, R. 1907. Wachstumgesetze, Wachstumfaktoren und Temperaturwerte der holzzerstörenden Mycelien. Hausschwammforschungen. (Jena)1: 53–154. [Abst Central. Bakt. Parasit. & Infek. 20: 348. 1908.]Google Scholar
  23. 23.
    Findlay, W. P. K. 1932. Laboratory methods for testing wood preservatives. Ann. Appl. Biol.19: 271–280.CrossRefGoogle Scholar
  24. 24.
    Finney, D. J. 1944. The application of the probit method to toxicity test data adjusted for mortality in the controls. Ann. Appl. Biol.31: 68–74.CrossRefGoogle Scholar
  25. 25.
    Fitzgibbon, M. 1943. Seed disinfection. The determination of the adhesiveness of seed dressings to cereal seeds. Jour. Soc. Chem. Ind.62: 8–11. [Abst. Rev. Appl. Mycol. 22: 347–348. 1943].CrossRefGoogle Scholar
  26. 26.
    Frear, D. E. H. 1944. Deposition and retention of sprays. III. Apparatus and methods for laboratory spraying. Penn. Agr. Exp. Sta., Bul. 463.Google Scholar
  27. 27.
    Gaddum, J. H. 1933. Reports on biological standards. III. Methods of biological assay depending on a quantal response. Med. Res. Council (London) Spec. Rep. Series183: 1–46.Google Scholar
  28. 28.
    Gandhi, R. C. andK. Venkataraman. 1942. Mildew in cotton. I. The routine examination of textile antiseptics. II. Estimation of salicylanilide in textiles. III. Synthetical experiments in antiseptics for textiles. Derivatives of cashew-nut shell oil. Jour. Indian Chem. Soc. Ind. & News Ed.5: 75–84. [Abst. Rev. Appl. Mycol. 22: 322. 1943.]Google Scholar
  29. 29.
    Gassner, G. 1943. Zur Methodik der laboratoriumsmässigen Prüfung von Beizmitteln. Phytopath. Zeits.14: 303–309. [Abst. Rev. Appl. Mycol. 22:490. 1943.]Google Scholar
  30. 30.
    Girard, Aimé. 1892. Recherches sur l’adhérence aux feuilles des plantes et notamment aux feuilles de la pomme de terre, des composés cuivriques destinés à combattre leurs maladies. Compt. Rend. Acad. Sci. (Paris)114: 234–236.Google Scholar
  31. 31.
    Goldsworthy, M. C. andE. L. Green. 1938. Effect of low concentrations of copper on germination and growth of conidia ofSclerotinia fructicola andGlomerella cingulata. Jour. Agr. Res.56: 489–505.Google Scholar
  32. 32.
    Görnitz, al. 1933. Methoden zur Prüfung von Pflanzenschutzmitteln. Beiträge IV-VI. Mitt. Biol. Reichsanst für Land- und Forstwirtsch46: 1–94. [Abst. Rev. Appl. Mycol. 12: 577. 1933.]Google Scholar
  33. 33.
    Hamilton, J. M. 1931. Studies on the fungicidal action of certain dusts and sprays in the control of apple scab. Phytopath.21: 445–523.Google Scholar
  34. 34.
    —.et al. 1943. Particle size of sulphur and copper fungicides in relation to apple scab and cedar-apple rust control. Phytopath.33: 533–550.Google Scholar
  35. 35.
    — andL. O. Weaver. 1940. Methods of determining the effectiveness of fungicides against apple scab and the cedar-rust fungi. Phytopath.30: 7.Google Scholar
  36. 36.
    ——. 1943. Freezing preservation of fungi and fungus spores. Phytograph.33: 612–613.Google Scholar
  37. 37.
    Heuberger, J. W. 1940. A laboratory biological assay of tenacity of fungicides. Phytopath.30: 840–847.Google Scholar
  38. 38.
    — andN. Turner. 1942. A laboratory apparatus for studying settling rate and fractionation of dusts. Phytopath.32: 166–171.Google Scholar
  39. 39.
    Hilgendorff, G. 1928. Über die Bestimmung der Haftfähigkeit von Trockenbeizmitteln. Fortschr. der Landw.3: 725–729. [Abst. Rev. Appl. Mycol. 8:31. 1929.]Google Scholar
  40. 40.
    Hockenyos, G. L. andG. R. Irwin. 1932. Studies on Bordeaux deposition. Phytopath.22: 857–860.Google Scholar
  41. 41.
    Horsfall, J. G. 1941. Biological assay of protective fungicides. Chron. Bot.6: 292–294.Google Scholar
  42. 42.
    — andA. E. Dimond. 1942. Comparing fungicides at dosages for equal control. Phytopath.32: 10.Google Scholar
  43. 43.
    et al. 1941. Predicting protective value of fungicides in the laboratory. Phytopath.31: 12.Google Scholar
  44. 44.
    et al. 1940. A design for laboratory assay of fungicides. Phytopath.30: 545–563.Google Scholar
  45. 45.
    — andA. D. McDonnell. 1943. The coverage factor in fungicidal efficiency. Phytopath.33: 1114.Google Scholar
  46. 46.
    et al. 1937. Studies upon the copper fungicides. IV. The fungicidal value of the copper oxides. Ann. Appl. Biol.24: 867–882.CrossRefGoogle Scholar
  47. 47.
    Howard, F. L. 1941. Antidoting toxin ofPhytophthora cactorum as a means of plant disease control. Science94: 345.PubMedCrossRefGoogle Scholar
  48. 48.
    Ipsen, J. 1941. Contribution to the theory of biological standardization on the basis of experiments with bacterial toxins. Copenhagen. Nyt Nordisk Forlag. Arnold Busck.Google Scholar
  49. 49.
    Keitt, G. W. and L. K. Jones. 1926. Studies of the epidemiology and control of apple scab. Wis. Agr. Exp. Sta., Res. Bul. 73.Google Scholar
  50. 50.
    Kotte, W. 1924. Zur Beurteilung von Pflanzenschutzmitteln im Laboratoriumsversuch. Zeits. Angew. Chemie.37: 508–509. [Abst. Rev. Appl. Mycol.3: 593–594. 1924.]CrossRefGoogle Scholar
  51. 51.
    Krauss, J. 1928. Beitrag zur Methodik der Beizmittelprüfung im Laboratorium. Nachrichtenbl. Deut. Pflanzenschutzdienst8: 71–72. [Abst. Rev. Appl. Mycol.8: 32. 1929.]Google Scholar
  52. 52.
    —. 1931. Zur Prüfung der Leistung von Trockenbeizgeräten. Nachrichtenbl. Deut. Pflanzenschutzdienst11: 34–35. [Abst. Rev. Appl. Mycol. 10: 650. 1931.]Google Scholar
  53. 53.
    Leutritz, J., Jr. 1939. Acceleration of toximetric tests of wood preservatives by the use of soil as a medium. Phytopath.29: 901–903.Google Scholar
  54. 54.
    Liese, al. 1935. Toximetrische Bestimmung von Holzkonservierungsmitteln. Zusam. Ber. Beih. Ang. Chem.11: 1–18. [Abst. Rev. Appl. Mycol. 14:411. 1935.]Google Scholar
  55. 55.
    Lin, C. K. 1940. Germination of the conidia ofSclerotinia fructicola with special reference to the toxicity of copper. Cornell Agr. Exp. Sta., Mem.233: 1–33.Google Scholar
  56. 56.
    McCallan, S. E. A. 1930. Studies on fungicides. II. Testing protective fungicides in the laboratory. Cornell Univ. Agr. Exp. Sta., Mem.128: 8–24.Google Scholar
  57. 57.
    —. 1943. Empirical probit weights for dosage-response curves of greenhouse tomato foliage diseases. Boyce Thomp. Inst., Contr.13: 177–183.Google Scholar
  58. 58.
    — andR. H. Wellman. 1942. Fungicidal versus fungistatic. Boyce Thomp. Inst., Contr.12: 451–463.Google Scholar
  59. 59.
    ——. 1943. A greenhouse method of evaluating fungicides by means of tomato foliage diseases. Boyce Thomp. Inst., Contr.13: 93–134.Google Scholar
  60. 60.
    ——. 1943. Cumulative error terms for comparing fungicides by established laboratory and greenhouse methods. Boyce Thomp. Inst., Contr.13: 135–141.Google Scholar
  61. 61.
    et al. 1941. An analysis of factors causing variation in spore germination tests of fungicides. III. Slope of toxicity curves, replicate tests, and fungi. Boyce Thomp. Inst., Contr.12: 49–77.Google Scholar
  62. 62.
    — andF. Wilcoxon. 1932. The precision of spore germination tests. Boyce Thomp. Inst., Contr.4: 233–243.Google Scholar
  63. 63.
    ——. 1939. An analysis of factors causing variation in spore germination tests of fungicides. I. Methods of obtaining spores. Boyce Thomp. Inst., Contr.11: 5–20.Google Scholar
  64. 64.
    ——. 1940. An analysis of factors causing variation in spore germination tests of fungicides. II. Methods of spraying. Boyce Thomp. Inst., Contr.11: 309–324.Google Scholar
  65. 65.
    MacInnes, J. 1925. Quantitative studies on the efficiency of fungicides. Phytopath.15: 203–213.Google Scholar
  66. 66.
    Magie, R. O. andJ. G. Horsfall. 1936. Relative adherence of cuprous oxide and other copper fungicides. Phytopath.26: 100–101.Google Scholar
  67. 67.
    Marsh, R. W. 1936. Notes on a technique for the laboratory evaluation of protective fungicides. Brit. Myc. Soc., Trans.20: 304–309.CrossRefGoogle Scholar
  68. 68.
    Martin, H. 1932. The laboratory examination of fungicidal dusts and sprays. Ann. Appl. Biol.19: 263–271.CrossRefGoogle Scholar
  69. 69.
    —. 1942. The significance of the bio-assay in studies of fungicidal action. Ann. Appl. Biol.29: 326–328.Google Scholar
  70. 70.
    —. 1943. The evaluation of fungicides. A study in quantitative toxicology. Jour. Soc. Chem. Ind., London62: 67–71.Google Scholar
  71. 71.
    Miller, H. J. 1943. A comparison of laboratory and field retention and protective value of certain copper fungicides. Phytopath.33: 899–909.Google Scholar
  72. 71a.
    —. 1944. Phytopath.34: 1009.Google Scholar
  73. 72.
    Montgomery, H. B. S. andM. H. Moore. 1938. A laboratory method for testing the toxicity of protective fungicides. Jour. Pom. & Hort. Sci.15: 253–266.Google Scholar
  74. 73.
    Muskett, A. E. 1938. Biological technique for the evaluation of fungicides. I. The evaluation of seed disinfectants for the control ofHelminthosporium disease of oats. Ann. Bot.2: 699–715.Google Scholar
  75. 74.
    — andJ. Colhoun. 1942. Biological technique for the evaluation of fungicides II. The evaluation of seed disinfectants for the control of seed-borne diseases of flax. Ann. Bot.6: 219–227.Google Scholar
  76. 75.
    Myers, R. P. 1929. The germicidal properties of alkaline washing solutions with special reference to the influence of hydroxyl-ion concentration, buffer index, and osmotic pressure. Jour. Agr. Res.38: 521–563.Google Scholar
  77. 76.
    Nielsen, L. W. 1942. Studies with silver compounds and mixtures as fungicidal sprays. Cornell Univ. Agr. Exp. Sta., Mem.248: 1–44.Google Scholar
  78. 77.
    Nikitin, A. A. 1938. The application of electrodialysis to the study of copper fungicides. Phytopath.28: 17.Google Scholar
  79. 78.
    Osterhout, W. J. V. 1915. The measurement of toxicity. Jour. Biol. Chem.23: 67–70.Google Scholar
  80. 79.
    Palmiter, D. H. 1934. Variability in monoconidial cultures ofV. inaequalis. Phytopath.24: 22–47.Google Scholar
  81. 80.
    Parker-Rhodes, A. F. 1941. Studies on the mechanism of fungicidal action. I. Preliminary investigations of nickel, copper, zinc, stiver, and mercury. Ann. Appl. Biol.28: 389–405.CrossRefGoogle Scholar
  82. 81.
    —. 1942. Studies on the mechanism of fungicidal action. II. Elements of the theory of variability. Ann. Appl. Biol.29: 126–135.CrossRefGoogle Scholar
  83. 82.
    Partansky, A. M. andR. R. McPherson. 1940. Testing mold-resistant properties of oil paints. A laboratory method. Ind. & Eng. Chem. (Anal. Ed.)12: 443–445.CrossRefGoogle Scholar
  84. 83.
    Peterson, P. D. 1941. The spore germination method of evaluating fungicides. Phytopath.31: 1108–1116.Google Scholar
  85. 84.
    Pinckard, J. A. andR. McLean. 1940. A laboratory method for determining the fungicidal value of vapors and its application to paradichlorobenzene in the control of tobacco downy mildew. Phytopath.30: 19.Google Scholar
  86. 85.
    et al. 1940. Toxicity of paradichlorobenzene in relation to control of tobacco downy mildew. Phytopath.30: 485–495.Google Scholar
  87. 86.
    Potter, C. 1941. A laboratory spraying apparatus and technique for investigating the action of contact insecticides with some notes on suitable test insects. Ann. Appl. Biol.28: 142–169.CrossRefGoogle Scholar
  88. 87.
    Prévost, B. 1807. Mémoire sur la cause immédiate de la carie ou charbon des blés, et de plusieurs autres maladies des plantes, et sur les préservatifs de la carie. Phytopath. Classic6: 1–94. [Trans. by G. W. Keitt, 1939.]Google Scholar
  89. 88.
    Rangel, J. F. 1942. Toxicologia dos désinfestantes das sementes. Bol. Esc. Nac. Agron., Rio de Janeiro 1941: 185–223. [English Summary] [Abst. Rev. Appl. Myc. 22: 258.1943.]Google Scholar
  90. 89.
    Reddick, D. andE. Wallace. 1910. On a laboratory method of determining the fungicidal value of a spray mixture or solution. Science31: 798.Google Scholar
  91. 90.
    Rideal, S. andJ. F. A. Walker. 1903. Determination of the value of a disinfectant in terms of its carbolic coefficient. Jour. Roy. Sanitary Inst.24: 424.Google Scholar
  92. 91.
    Riehm, E., 1920. Prüfung von Pflanzenschutzmitteln. Mitt Biol. Reichsanst. f. Land-u. Forstwirtsch. H: 18. [Abst. Centralblatt Bakteriologie 56: 171. 1922.]Google Scholar
  93. 92.
    —. 1923. Zur Chemotherapie der Pflanzenkrankheiten. Zeits. Ang. Chemie36: 3–4. [Abst. Rev. Appl. Myc.2: 552. 1923.]CrossRefGoogle Scholar
  94. 93.
    Ryan, al. 1943. The tube method of measuring the growth rate ofNeurospora. Am. Jour. Bot.30: 784–799.CrossRefGoogle Scholar
  95. 94.
    Salvin, S. B. 1942. Factors controlling sporangial type inThraustotheca primoachlya andDictyuchus achlyoides. I. Am. Jour. Bot.29: 97–104.CrossRefGoogle Scholar
  96. 95.
    Schmidt, E. W. 1924. Über die Ausmittelung eines Pflanzenschutzmittels und seine fungizide Bewertung, Zeits. Ang. Chemie37: 267–270. [Abst. Rev. Appl. Myc.3: 592. 1924.]CrossRefGoogle Scholar
  97. 96.
    —. 1924. Eine biologische Methode zum Nachweis der Regenwirkung auf Pflanzenschutzmittel. Zeits. Ang. Chemie37: 981–982. [Abst. Rev. Appl. Myc.4: 230. 1925.]CrossRefGoogle Scholar
  98. 97.
    —. 1924. Ueber die Ausmittelung eines Pflanzenschutzmittels und seine fungizide Bewertung. Zeits. Ang. Chemie37: 903. [Abst. Rev. Appl. Myc.4: 231. 1925.]CrossRefGoogle Scholar
  99. 98.
    —. 1925. Zur Bewertung der Fungiziditat eines Stoffes. Zeits. Ang. Chemie38: 67–70. [Abst. Rev. Appl. Myc.4: 360–361. 1925.]CrossRefGoogle Scholar
  100. 99.
    Schmitz, al. 1930. A suggested toximetric method for wood preservatives. Ind. & Eng. Chem. (Anal. Ed.)2: 361–363. [Abst. Rev. Appl. Myc. 10: 217. 1931.]CrossRefGoogle Scholar
  101. 100.
    Simanton, W. A. andA. C. Miller. 1937Housefly age as a factor in susceptibility to pyrethrum sprays. Jour. Econ. Ent.30: 917–921.Google Scholar
  102. 101.
    Steinberg, R. A. 1940. Action of some organic compounds on yield, sporulation, and starch formation ofAspergillus niger. Jour. Agr. Res.60: 765–773.Google Scholar
  103. 102.
    Stoddard, E. M. 1944. Immunization of peach trees to X disease by chemotherapy. Phytopath.34: 1011. 1944.Google Scholar
  104. 103.
    Swingle, W. T. 1896. Bordeaux mixture, its chemistry, physical properties, and toxic effects on fungi and algae. U. S. Dept. Agr., Div. Veg. Phys. & Path., Bul.9: 1–37.Google Scholar
  105. 104.
    Tattersfield, F. 1939. Biological methods of testing insecticides. Am. Appl. Biol.26: 365–384.CrossRefGoogle Scholar
  106. 105.
    Thom, al. 1934. Laboratory tests for mildew resistance of outdoor cotton fabrics. American Dyestuffs Reporter.23: 581–586.Google Scholar
  107. 106.
    Thorburn, A. M. andJ. M. Vincent. 1941. Protection of cloth against microbial deterioration—methods of testing the value of antiseptics. Jour. Aust. Inst. Agr. Sci.,7: 29–31. [Abst. Rev. Appl. Myc 20: 361. 1940.]Google Scholar
  108. 107.
    Tornow, Elisabeth. 1930. Zur Prüfung von Saatbeizmitteln. Prakt. Blätter f. Pflanzenbau und Pflanzenschutz8: 7–9. [Abst. Rev. Appl. Myc.9: 637. 1930.]Google Scholar
  109. 108.
    Trevan, J. W. 1927. The error of determination of toxicity. Proc. Roy. Soc. (London) B101: 483–514.CrossRefGoogle Scholar
  110. 109.
    Turner, N. 1943. Reversals in order of effectiveness of insecticides. Jour. Econ. Ent.36: 725–728.Google Scholar
  111. 110.
    Wadley, F. M. andW. N. Sullivan. 1943. A study of the dosage mortality curve. Jour. Econ. Ent.36: 367–372.Google Scholar
  112. 111.
    Walker, J. al. 1937. Toxicity of mustard oils and related sulfur compounds to certain fungi. Am. Jour. Bot.24: 536–541.CrossRefGoogle Scholar
  113. 112.
    Wampler, E. L. andW. M. Hoskins. 1939. Factors concerned in the deposit of sprays. VI. The role of electrical charges produced during spraying. Jour. Econ. Ent.32: 61–69.Google Scholar
  114. 113.
    Waterman, R. al. 1938. Chemical studies of wood preservation. The wood-block method of toxicity assay. Ind. & Eng. Chem. (Anal. Ed.)10: 306–314.CrossRefGoogle Scholar
  115. 114.
    Wellman, R. H. andS. E. A. McCallan. 1942. An analysis of factors causing variation in spore germination tests of fungicides. IV. Time and temperature. Boyce Thomp. Inst., Contr.12: 431–449.Google Scholar
  116. 115.
    ——. 1943. Correlations between slide-germination, greenhouse tomato foliage disease, and wheat smut methods of testing fungicides. Boyce Thomp. Inst., Contr.13: 143–169.Google Scholar
  117. 116.
    Whetzel, H. H. andS. E. A. McCallan. 1930. Studies on fundicides. I. Concepts and terminology. Cornell Univ. Agr. Exp. Sta., Mem. 128: 1–7.Google Scholar
  118. 117.
    Whipple, G. C. 1916. The element of chance in sanitation. Jour. Franklin Inst.182: 37–59.CrossRefGoogle Scholar
  119. 118.
    Wilcoxon, F. andS. E. A. McCallan. 1931. The fungicidal action of sulphur. III. Physical factors affecting the efficiency of dusts. Boyce Thomp. Inst., Contr.3: 509–528.Google Scholar
  120. 119.
    ——. 1934. The stimulation of fungous spore germination by aqueous plant extracts. Phytopath.24: 20.Google Scholar
  121. 120.
    ——. 1939. Theoretical principles underlying laboratory toxicity tests of fungicides. Boyce Thomp. Inst., Contr.10: 329–338.Google Scholar
  122. 121.
    Williams, R. C. 1929. Laboratory method for measuring relative adhesive qualities of fungicidal dusts. Ind. & Eng. Chem. (Anal. Ed.)1: 81–82.CrossRefGoogle Scholar
  123. 122.
    Yarwood, C. E. 1943. The function of lime and host leaves in the action of bordeaux mixture. Phytopath.33: 1146–1156.Google Scholar
  124. 123.
    Young, H. C. andE. H. Cooper. 1917. A method for determining the fungicidal coefficient of lime sulphur and other common fungicides. Mich. Acad. Sci., Rep.19: 221–236.Google Scholar
  125. 124.
    Zade, A. 1940. En enkel snabbmetod för prövning av betningsmedlens verkan mot Havreflygsot,Ustilago avenae (Pers.) Jens. Nord. Jordbr Forskn.,22: 244–255. [German Summary.] [Abst. Rev. Appl. Myc. 22:300. 1943.]Google Scholar
  126. 125.
    Zentmyer, G. A. 1942. Toxin formation and chemotherapy in relation to Dutch elm disease. Phytopath.32: 20.Google Scholar

Copyright information

© The New York Botanical Garden 1945

Authors and Affiliations

  • James G. Horsfall
    • 1
  1. 1.Connecticut Agricultural Experiment StationUSA

Personalised recommendations