Advertisement

The Botanical Review

, Volume 51, Issue 1, pp 107–157 | Cite as

Light-dependent anthocyanin synthesis: A model system for the study of plant photomorphogenesis

  • Alberto L. Mancinelli
Article

Abstract

The biosynthesis of anthocyanins in plant tissues either requires light or is enhanced by it. Light-dependent anthocyanin synthesis has been extensively used as a model system for studies of the mechanism of photoregulation of plant development. Two components can be distinguished in the action of light on anthocyanin production. The first component is the red-far red reversible, phytochrome-mediated response induced by short irradiations; the amount of anthocyanin formed in response to a single, short irradiation is small. The second component is the response to prolonged exposures; the formation of large amounts of anthocyanin requires prolonged exposures to high fluence rates of visible and near-visible radiation (290 to 750 nm) and shows the typical properties of the “High Irradiance Reaction” (HIR) of plant photomorphogenesis. Phytochrome is involved in the photoregulation of the HIR response and is the only photoreceptor mediating the action of prolonged red and far red irradiations. The response to prolonged ultraviolet and blue radiation is probably mediated, at least in some systems, by two photoreceptors: phytochrome and cryptochrome, the latter being a specific ultraviolet-blue-light photoreceptor. The nature of the interaction between phytochrome and cryptochrome in the regulation of plant photomorphogenic responses is still unclear.

Keywords

Botanical Review Spectral Sensitivity Fluence Rate Anthocyanin Synthesis Norflurazon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

L

light

D

dark

UV

ultraviolet

UV-A

320-400 nm

UV-B

290-320 nm

BL

blue, 400–480 nm

R

red, 600–690 nm

FR

far red, 700–760 nm

HIR

high irradiance reaction

Pr

red absorbing form of phytochrome

Pfr

far red absorbing form of phytochrome

P

total phytochrome = Pr + Pfr

CMU

monuron; 3-(p-chlorophenyl)-1,1-dimethylurea

DCMU

diuron; 3-(3,4-dichlorophenyl)-1,1-dimethylurea

FMN

flavinmononucleotide

NF

Norflurazon (SAN-9789); 4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3-(2H)-pyridazinone

Riassunto

La biosintesi delle antociane nei tessuti vegetali è un processo metabolico regolato dalla luce. Alcune specie formano antociane solo quando sono esposte alla luce. Altre specie possono formare antociane al buio, ma velocità di sintesi e concentrazione finale del pigmento aumentano notevolmente quando l’organismo è esposto alla luce. Lo studio degli effetti della luce sulla biosintesi delle antociane è stato usato estensivamente come un sistema modello per lo studio della photoregolazione dello sviluppo dei vegetali. Nella azione della luce sulla biosintesi delle antociane si possono distinguere due tipi di risposta allo stimolo luminoso. Il primo tipo è la risposta a illuminazioni brevi (pochi minuti), caratterizata dalla fotoreversibilita degli effetti indotti dalla radiazione rossa (R, 600–670 nm) e rosso-estrema (FR, 710–750 nm) ed è mediato dal fitocromo; la quantità di antociane formate in risposta an una breve illuminazione è scarsa. Il secondo tipo è la risposta a illuminazioni prolungate (ore or giorni); la risposta massima per la formazione di antociane richiede esposizioni prolungate ad alte intensité di radiazione nella regione spettrale compresa tra l’ultravioletto vicino e l’estremo rosso (290–750 nm) ed ha le caratteristiche tipiche dei processi fotomorfogenici HIR. Il fitocromo è il fotorecettore responsabile per la fotoregolazione dei processi HIR ed è probabilmente l’unico fotorecettore responsabile per la fotoregolazione della risposta a irradiazioni prolungate con R e FR. La risposta a irradiazioni prolungate con UV e BL è probablimente regolata, in alcune specie, attraverso la cooperazione tra due fotorecettori, fitocromo e criptocromo; quest’ultimo è un fotorecettore specifico per la radiazione UV e BL. L’identità del criptocromo e le caratteristiche dell’interazione tra fitocromo e criptocromo nella fotoregolazione dei processi di sviluppo dei vegetali sono ancora poco conosciute.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Acton, G. J., W. Fischer andP. Schopfer. 1980. Lag phase and rate of synthesis in phytochrome mediated induction of phenylalanine ammonia lyase in mustard cotyledons. Planta150: 53–57.CrossRefGoogle Scholar
  2. Alfermann, W. 1972. Induction of anthocyanin synthesis by light and auxin in tissue cultures ofDaucus carota. Proc. 6th Int. Congr. Photobiol., Bochum: abstract No. 187.Google Scholar
  3. Bartels, P. G. andA. Hyde. 1970. Chloroplast development in SANDOZ-6708-treated wheat seedlings. Pl. Physiol.45: 807–810.Google Scholar
  4. Beggs, C. J., W. Geile, M. G. Holmes, M. Jabben, A. M. Jose andE. Schäfer. 1981. High irradiance response promotion of a subsequent light induction response inSinapis alba L. Planta151: 135–140.CrossRefGoogle Scholar
  5. —,M. G. Holmes, M. Jabben andE. Schäfer. 1980. Action spectra for the inhibition of hypocotyl growth by continuous irradiation in light and dark-grownSinapis alba L. seedlings. Pl. Physiol.66: 615–618.Google Scholar
  6. Bellini, E. andM. Martelli. 1973. Anthocyanin synthesis in radish seedlings: Effects of continuous far red irradiation and phytochrome transformation. Z. Pflanzenphysiol.70: 12–21.Google Scholar
  7. Black, M. andJ. E. Shuttleworth. 1974. The role of cotyledons in the photocontrol of hypocotyl extension inCucumis sativus. Planta117: 57–66.CrossRefGoogle Scholar
  8. Boisard, J., D. Marmé andW. R. Briggs. 1974. In vivo properties of membrane bound phytochrome. Pl. Physiol.54: 272–276.Google Scholar
  9. Borthwick, H. A. 1972a. History of phytochrome. Pages 3–23in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  10. —. 1972b. The biological significance of phytochrome. Pages 27–44in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  11. —,S. B. Hendricks, M. J. Schneider, R. B. Taylorson andV. K. Toole. 1969. The high energy light action controlling plant responses and development. Proc. Natl. Acad. U.S.A.64: 479–486.CrossRefGoogle Scholar
  12. Bregeaut, J. andP. Rollin. 1965. Influence de la lumière sur la synthèse des anthocyanes chezPhacelia tanacetifolia (Hydrophyllacées). Isr. J. Bot.14: 59–68.Google Scholar
  13. Briggs, W. R. 1983. Blue light photoreceptors in higher plants and fungi. Photochem. & Photobiol.37: S61.Google Scholar
  14. — andH. P. Chon. 1966. The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Pl. Physiol.41: 1159–1166.Google Scholar
  15. — andH. W. Siegelman. 1965. Distribution of phytochrome in etiolated seedlings. Pl. Physiol.40:934–941.Google Scholar
  16. Brockmann, J. andE. Schäfer. 1982. Analysis of Pfr destruction inAmaranthus caudatus L.: Evidence for two pools of phytochrome. Photochem. & Photobiol.35: 555–558.CrossRefGoogle Scholar
  17. Butler, W. L. 1972. Photochemical properties of phytochrome in vitro. Pages 27–44in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  18. —,S. B. Hendricks andH. W. Siegelman. 1964. Action spectra of phytochrome in vitro. Photochem. & Photobiol.3: 521–528.CrossRefGoogle Scholar
  19. — andH. C. Lane. 1965. Dark transformations of phytochrome in vivo. Pl. Physiol.40: 13–17.CrossRefGoogle Scholar
  20. —— andH. W. Siegelman. 1963. Nonphotochemical transformations of phytochrome in vivo. Pl. Physiol.38: 514–519.Google Scholar
  21. Chon, H. P. andW. R. Briggs. 1966. Effect of red light on the phototropic sensitivity of corn coleoptiles. Pl. Physiol.66: 1715–1724.Google Scholar
  22. Chorney, W. andS. A. Gordon. 1966. Action spectrum and characteristics of the light activated disappearance of phytochrome in oat seedlings. Pl. Physiol.41: 891–896.Google Scholar
  23. Colbert, J. T., H. P. Hershey andP. H. Quail. 1983. Autoregulatory control of translatable phytochrome mRNA levels. Proc. Natl. Acad. U.S.A.80: 2248–2252.CrossRefGoogle Scholar
  24. Correll, D. L. andW. Shropshire, Jr. 1968. Phytochrome in etiolated annual rye. I. Changes during growth in the amount of photoreversible phytochrome in the coleoptile and primary leaf. Planta79: 275–283.CrossRefGoogle Scholar
  25. Creasy, L. 1968. The significance of carbohydrate metabolism in flavonoid synthesis in strawberry leaf disks. Phytochemistry7: 1743–1749.CrossRefGoogle Scholar
  26. Dooskin, R. H. andA. L. Mancinelli. 1968. Phytochrome decay and coleoptile elongation inAvena following various light treatments. Bull. Torrey Bot. Club95: 474–487.CrossRefGoogle Scholar
  27. Downs, R. J. 1964. Photocontrol of anthocyanin synthesis. J. Wash. Acad. Sci.54: 112–120.Google Scholar
  28. —,S. B. Hendricks andH. A. Borthwick. 1957. Photoreversible control of elongation of pinto beans and other plants under normal conditions of growth. Bot. Gaz.118: 199–208.CrossRefGoogle Scholar
  29. — andH. W. Siegelman. 1963. Photocontrol of anthocyanin synthesis in milo seedlings. Pl. Physiol.38: 25–30.Google Scholar
  30. ——,W. L. Butler andS. B. Hendricks. 1965. Photoreceptive pigments for anthocyanin synthesis in apple skin. Nature205: 909–910.CrossRefGoogle Scholar
  31. Drumm, H. andH. Mohr. 1974. The dose response curve in phytochrome mediated anthocyanin synthesis in the mustard seedling. Photochem. & Photobiol.20: 151–157.CrossRefGoogle Scholar
  32. —. 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of theSorghum seedling. Photochem. & Photobiol.27: 241–248.CrossRefGoogle Scholar
  33. —,A. Wildermann andH. Mohr. 1975. The high irradiance response in anthocyanin formation as related to the phytochrome level. Photochem. & Photobiol.21: 269–273.CrossRefGoogle Scholar
  34. Drumm-Herrel, H. andH. Mohr. 1981. A novel effect of UV-B in a higher plant (Sorghum vulgare). Photochem. & Photobiol.33: 391–398.CrossRefGoogle Scholar
  35. ——. 1982a. Effect of prolonged light exposures on the effectiveness of phytochrome in anthocyanin synthesis in tomato seedlings. Photochem. & Photobiol.35: 233–236.CrossRefGoogle Scholar
  36. ——. 1982b. Effect of blue/UV light on anthocyanin synthesis in tomato seedlings in the absence of bulk carotenoids. Photochem. & Photobiol.36: 229–233.CrossRefGoogle Scholar
  37. Duke, S. O., S. B. Fox andA. W. Naylor. 1976. Photosynthetic independence of light induced anthocyanin formation inZea seedlings. Pl. Physiol.57: 192–196.Google Scholar
  38. — andA. W. Naylor. 1976. Light control of anthocyanin biosynthesis inZea seedlings. Physiol. Pl.37: 62–68.CrossRefGoogle Scholar
  39. Evans, L. T., S. B. Hendricks andH. A. Borthwick. 1965. The role of light in suppressing hypocotyl elongation in lettuce andPetunia. Planta64: 201–218.CrossRefGoogle Scholar
  40. Frankland, B. 1972. Biosynthesis and dark transformations of phytochrome. Pages 193–225in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  41. Fuad, N. andR. Yu. 1977. Action spectrum of phytochrome binding to a subcellular fraction of maize coleoptiles. Photochem. & Photobiol.25: 491–496.CrossRefGoogle Scholar
  42. Fukshansky, L. 1978. On the theory of light absorption in non-homogeneous objects. J. Math. Biol.6: 177–196.CrossRefGoogle Scholar
  43. — andN. Kazarinova. 1980. Extension of the Kubelka-Munk theory of light propagation in intensely scattering materials to the fluorescent media. J. Opt. Soc. Am.70: 1101–1111.Google Scholar
  44. — andE. Schäfer. 1983. Models in photomorphogenesis. Pages 69–95in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology). Springer-Verlag, Berlin.Google Scholar
  45. Furuya, M., W. G. Hopkins andW. S. Hillman. 1965. Effects of metal complexing and sulfhydryl compounds on nonphotochemical changes of phytochrome in vivo. Arch. Biochem. Biophys.112: 180–186.PubMedCrossRefGoogle Scholar
  46. Gammermann, A. Y. andL. Y. Fukshansky. 1974. A mathematical model of phytochrome, the receptor of photomorphogenic processes in plants. Ontogenez5: 122–129.Google Scholar
  47. Gorton, H. L. andW. R. Briggs. 1980. Phytochrome responses to end-of-day irradiations in light-grown corn grown in the presence and absence of SANDOZ-9789. Pl. Physiol.66: 1024–1026.Google Scholar
  48. Gottmann, K. andE. Schäfer. 1982. In vitro synthesis of phytochrome apoprotein directed by mRNA from light and dark grownAvena seedlings. Photochem. & Photobiol.35: 521–525.CrossRefGoogle Scholar
  49. Gressel, J. 1979. Blue light photoreception. Photochem. & Photobiol.30: 749–754.CrossRefGoogle Scholar
  50. Grill, R. 1965. Photocontrol of anthocyanin formation in turnip seedlings. I. Demonstration of phytochrome action. Planta66: 293–300.CrossRefGoogle Scholar
  51. —. 1967. Photocontrol of anthocyanin formation in turnip seedlings. IV. The effect of feeding precursors. Planta76: 11–24.CrossRefGoogle Scholar
  52. — andD. Vince. 1965. Photocontrol of anthocyanin formation in turnip seedlings. II. The possible role of phytochrome in the response to prolonged irradiation with far red or blue light. Planta67: 122–135.CrossRefGoogle Scholar
  53. ——. 1966. Photocontrol of anthocyanin formation in turnip seedlings. III. The photoreceptors involved in the response to prolonged irradiation. Planta70: 1–12.CrossRefGoogle Scholar
  54. ——. 1969a. Photocontrol of anthocyanin synthesis in turnip seedlings. VI. Lag phases. Planta86: 116–123.CrossRefGoogle Scholar
  55. ——. 1970. Photocontrol of anthocyanin formation in turnip seedlings. VIII. Wavelength dependence. Planta95: 264–271.CrossRefGoogle Scholar
  56. Hahlbrock, K. andH. Grisebach. 1979. Enzymic control in the biosynthesis of lignin and flavonoids. Annual Rev. Pl. Physiol.30: 105–130.CrossRefGoogle Scholar
  57. Harborne, J. B. 1976. Functions of flavonoids in plants. Pages 736–778in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, London.Google Scholar
  58. Harraschain, H. andH. Mohr. 1963. Der Einfluss sichtbarer Strahlung auf die Flavonoid-Synthese und Morphogenese der Buchweizenkeimlange (Fagopyrum esculentum Moench.). II. Flavonol-Synthese und Hypocotylwachstum. Z. Bot.51: 277–299.Google Scholar
  59. Hartmann, K. M. 1966. A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. & Photobiol.5: 349–366.CrossRefGoogle Scholar
  60. — andI. Cohnen-Unser. 1972. Analytical action spectroscopy with living systems: Photochemical aspects and attenuance. Ber. Deutsch. Bot. Ges.85: 481–551.Google Scholar
  61. ——. 1973. Carotenoids and flavins versus phytochrome as the controlling pigment for the blue-UV-mediated photoresponses. Z. Pflanzenphysiol.69: 109–124.Google Scholar
  62. Heim, B., M. Jabben andE. Schäfer. 1981. Phytochrome destruction in dark and light grownAmaranthus caudatus seedlings. Photochem. & Photobiol.34: 89–93.Google Scholar
  63. — andE. Schäfer. 1982. Light controlled inhibition of hypocotyl growth inSinapis alba L. seedlings: Fluence rate dependence of hourly light pulses and continuous irradiation. Planta154: 150–155.CrossRefGoogle Scholar
  64. Hendricks, S. B. andH. A. Borthwick. 1959a. Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. Proc. Natl. Acad. U.S.A.45: 344–349.CrossRefGoogle Scholar
  65. ——. 1959b. Photocontrol of plant development by the simultaneous excitation of two interconvertible plant pigments. II. Theory and control of anthocyanin synthesis. Bot. Gaz.120: 187–193.CrossRefGoogle Scholar
  66. ——. 1967. The function ofphytochrome in the regulation of plant growth. Proc. Natl. Acad. U.S.A.58: 2125–2130.CrossRefGoogle Scholar
  67. Hillman, W. S. 1967. The physiology of phytochrome. Annual Rev. Pl. Physiol.18: 301–324.CrossRefGoogle Scholar
  68. —. 1972. On the physiological significance of in vivo phytochrome assays. Pages 573–584in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  69. Holmes, M. G. andL. Fukshansky. 1979. Phytochrome photoequilibria in green leaves under polychromatic radiation: A theoretical approach. Pl. Cell Environ.2: 59–65.CrossRefGoogle Scholar
  70. — andE. Schäfer. 1981. Action spectra for changes in the high irradiance reaction in hypocotyls ofSinapis alba L. Planta153: 267–272.CrossRefGoogle Scholar
  71. — andE. Wagner. 1982. The influence of chlorophyll on the spectral control of elongation growth inChenopodium rubrum L. hypocotyls. Pl. Cell Physiol.23: 745–750.Google Scholar
  72. Hrazdina, G. andL. L. Creasy. 1979. Light induced changes in anthocyanin concentration, activity of phenylalanine ammonia lyase and flavanone synthase and some of their properties inBrassica oleracea. Phytochemistry18: 581–584.CrossRefGoogle Scholar
  73. Huang-Yang, C. P. 1976. Photosynthetic independence of the high irradiance response anthocyanin synthesis in young seedlings. Ph.D. thesis, Columbia University, New York.Google Scholar
  74. Hunt, R. E. andL. H. Pratt. 1979. Phytochrome radioimmunoassay. Pl. Physiol.64: 327–331.CrossRefGoogle Scholar
  75. —. 1980. Radioimmunoassay of phytochrome content in green, light-grown oats. Pl. Cell Environ.3: 91–95.Google Scholar
  76. Jabben, M. 1980. The phytochrome system in light-grownZea mays L. Planta149: 91–96.CrossRefGoogle Scholar
  77. —,C. Beggs andE. Schäfer. 1982. Dependence of Pfr/Ptot ratios on light quality and light quantity. Photochem. & Photobiol.35: 709–712.CrossRefGoogle Scholar
  78. — andG. F. Deitzer. 1978a. A method for measuring phytochrome in plants grown in white light. Photochem. & Photobiol.27: 799–802.CrossRefGoogle Scholar
  79. ——. 1978b. Spectrophotometric phytochrome measurements in light grownAvena sauva L. Planta143: 309–313.CrossRefGoogle Scholar
  80. ——. 1979. Effects of the herbicide SAN 9789 on photomorphogenic responses. Pl. Physiol.63: 481–485.Google Scholar
  81. -,B. Heim and E. Schäfer. 1980. The phytochrome system in light and dark grown dicotyledonous seedlings. Pages 145–158in J. De Greef (ed.), Photoreceptors and plant development. Antwerpen Univ. Press.Google Scholar
  82. — andM. G. Holmes. 1983. Phytochrome in light grown plants. Pages 704–722in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology). Springer-Verlag, Berlin.Google Scholar
  83. Johnson, C. B. 1980. The effect of red light in the high irradiance reaction of phytochrome: Evidence for interaction between Pfr and a phytochrome cycling driven process. Pl. Cell Environ.3:45–51.Google Scholar
  84. — andR. Tasker. 1979. A scheme to account quantitatively for the action of phytochrome in etiolated and light-grown plants. Pl. Cell Environ.2: 259–265.CrossRefGoogle Scholar
  85. Jose, A. M. andE. Schäfer. 1978. Distorted phytochrome action spectra in green plants. Planta138: 25–28.CrossRefGoogle Scholar
  86. — andD. Vince-Prue. 1977a. Light-induced changes in the photoresponses of plant stems: The loss of a high irradiance response to far red light. Planta135: 95–100.CrossRefGoogle Scholar
  87. ——. 1977b. Action spectra for the inhibition of growth in radish hypocotyls. Planta136: 131–134.CrossRefGoogle Scholar
  88. Kandeler, R. 1958. Die Wirkung von farbigem und weissem Licht auf die Anthocyanbildung bei Cruciferen-Keimlingen. Ber. Dtsch. Bot. Ges.71: 34–44.Google Scholar
  89. Kendrick, R. E. andB. Frankland. 1968. Kinetics of phytochrome decay inAmamnthus seedlings. Planta86: 21–32.CrossRefGoogle Scholar
  90. Kidd, G. H. andL. H. Pratt. 1973. Phytochrome destruction: An apparent requirement for protein synthesis in the induction of the destruction mechanism. Pl. Physiol.52: 309–311.Google Scholar
  91. Kilsby, C. A. H. andC. B. Johnson. 1982. The in vivo spectrophotometric assay of phytochrome in two mature dicotyledonous plants. Photochem. & Photobiol.35: 255–260.CrossRefGoogle Scholar
  92. Klein, W. H. 1959. Interaction of growth factors with photoprocesses in seedling growth. Pages 207–215in R. B. Withrow (ed.), Photoperiodism and related phenomena in plants and animals. A.A.A.S., Washington, D.C.Google Scholar
  93. —,R. B. Withrow, V. Elstad andL. Price. 1957. Photocontrol of growth and pigment synthesis in the bean seedling as related to irradiance and wavelength. Amer. J. Bot.44: 15–19.CrossRefGoogle Scholar
  94. Koornneef, M., E. Rolff andC. J. P. Spruit. 1980. Genetic control of light inhibited hypocotyl elongation inArabidopsis thaliana. Z. Pflanzenphysiol.100: 147–160.Google Scholar
  95. Ku, P. K. andA. L. Mancinelli. 1972. Photocontrol of anthocyanin synthesis. Pl. Physiol.49:212–217.Google Scholar
  96. Lackmann, I. 1971. Action spectra of anthocyanin synthesis in tissue cultures and seedlings ofHaplopappus gracilis. Planta98: 258–269.CrossRefGoogle Scholar
  97. Lamb, C. J. andM. A. Lawton. 1983. Photocontrol of gene expression. Pages 213–257in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N. S.). Springer-Verlag, Berlin.Google Scholar
  98. Lange, H., W. Shropshire, Jr. andH. Mohr. 1971. An analysis of phytochrome-mediated anthocyanin synthesis. Pl. Physiol.47: 649–655.Google Scholar
  99. Mackenzie, J. M., Jr.,W. R. Briggs andL. H. Pratt. 1978. Intracellular phytochrome distribution as a function of its molecular form and of its destruction. Amer. J. Bot.65:671–676.CrossRefGoogle Scholar
  100. —,R. A. Coleman, W. R. Briggs andL. H. Pratt. 1975. Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc. Natl. Acad. U.S.A.72(3): 799–803.CrossRefGoogle Scholar
  101. Mancinelli, A. L. 1977. Photocontrol of anthocyanin synthesis inSpirodela polyrrhiza. Pl. Physiol.59: S49.Google Scholar
  102. —. 1980a. Anthocyanin synthesis in leaf disks of red cabbage. Pl. Physiol.65: S6.Google Scholar
  103. —. 1980b. The photoreceptors of the high irradiance responses of plant photomorphogenesis. Photochem. & Photobiol.32: 853–857.CrossRefGoogle Scholar
  104. —. 1984. Photoregulation of anthocyanin synthesis. VIII. Effect of light pretreatments. Pl. Physiol.75: 447–453.Google Scholar
  105. —,P. K. Ku-Tai andR. Susinno. 1974. Photocontrol of anthocyanin synthesis: Phytochrome, chlorophyll and anthocyanin synthesis. Photochem. & Photobiol.20: 71–79.CrossRefGoogle Scholar
  106. — andI. Rabino. 1975. Photocontrol of anthocyanin synthesis. IV. Dose dependence and reciprocity relationships. Pl. Physiol.56: 351–355.CrossRefGoogle Scholar
  107. ——. 1978. The high irradiance responses of plant photomorphogenesis. Bot. Rev.44: 129–180.Google Scholar
  108. — andO. M. Schwartz. 1984. Photoregulation of anthocyanin synthesis. IX. Photosensitivity of the response in dark and light-grown tomato seedlings. Pl. Cell Physiol.25: 93–105.Google Scholar
  109. — andA. Tolkowsky. 1968. Phytochrome and seed germination. V. Changes in phytochrome content during germination of cucumber seeds. Pl. Physiol.43: 489–494.Google Scholar
  110. — andL. Walsh. 1979. Photocontrol of anthocyanin synthesis. VII. Factors affecting the spectral sensitivity of anthocyanin synthesis in young seedlings. Pl. Physiol.63: 841–846.Google Scholar
  111. —,C. P. H. Yang, P. Lindquist, O. R. Anderson andI. Rabino. 1975. Photocontrol of anthocyanin synthesis. III. The action of streptomycin on chlorophyll and anthocyanin synthesis. Pl. Physiol.55: 251–257.Google Scholar
  112. ——,I. Rabino andK. M. Kuzmanoff. 1976. Photocontrol of anthocyanin synthesis. V. Further evidence against the involvement of photosynthesis in HIR anthocyanin synthesis of young seedlings. Pl. Physiol.58: 214–217.CrossRefGoogle Scholar
  113. Mitrakos, K. andW. Shropshire, Jr. (eds.). 1972. Phytochrome. Academic Press, London.Google Scholar
  114. Mohr, H. 1957. Der Einfluss monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanbildung bei Keimlingen vonSinapis alba L. Planta49: 389–405.CrossRefGoogle Scholar
  115. —. 1972. Lectures on photomorphogenesis. Springer-Verlag, Berlin.Google Scholar
  116. —,H. Drumm, R. Schmidt andB. Steinitz. 1979. Effect of light pretreatments on phytochrome mediated induction of anthocyanin and phenylalanine ammonia lyase. Planta146: 369–376.CrossRefGoogle Scholar
  117. — andH. Drumm-Herrel. 1981. Interaction between blue/UV light and light operating through phytochrome in higher plants. Pages 423–441in H. Smith (ed.), Plants and the daylight spectrum. Academic Press, London.Google Scholar
  118. —. 1983. Coaction between phytochrome and blue/UV light in anthocyanin synthesis in seedlings. Physiol. Pl.58: 408–414.CrossRefGoogle Scholar
  119. —— andW. Shropshire, Jr. 1983. An introduction to photomorphogenesis for the general reader. Pages 24–38in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of Plant Physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  120. — andE. Van Ness. 1963. Der Einfluss sichtbarer Strahlung auf die Flavonoid-Synthese und Morphogenese der Buchweizenkeimlinge (Fagopyrum esculentum Moench.). Z. Bot.51: 1–16.Google Scholar
  121. Munoz, V. andW. L. Butler. 1975. Photoreceptor pigment for blue light inNeurospora crassa. Pl. Physiol.55: 421–426.Google Scholar
  122. Ng, Y. L., K. V. Thimann andS. A. Gordon. 1964. The biogenesis of anthocyanin. X. The action spectrum for anthocyanin formation inSpirodela oligorrhiza. Arch. Biochem. Biophys.107: 550–558.PubMedCrossRefGoogle Scholar
  123. Ninnemann, H. 1980. Blue light photoreceptors. Bioscience30: 166–170.CrossRefGoogle Scholar
  124. Pardo, A. D. andJ. A. Schiff. 1980. Plastid and seedling development in SAN-9789-treated etiolated bean seedlings. Canad. J. Bot.58: 25–35.Google Scholar
  125. Piattelli, M. 1976. The betalains. Pages 560–596in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, London.Google Scholar
  126. Pratt, L. H. 1978. Molecular properties of phytochrome. Photochem. & Photobiol.27: 81–105.CrossRefGoogle Scholar
  127. —. 1979. Phytochrome: Function and properties. Photochem. & Photobiol. Rev.4: 59–124.Google Scholar
  128. —. 1982. Phytochrome: The protein moiety. Annual Rev. Pl. Physiol.33: 557–582.CrossRefGoogle Scholar
  129. —. 1983. Assay of photomorphogenic photoreceptors. Pages 152–177in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  130. — andW. L. Butler. 1970. Phytochrome photoconversion by ultraviolet light. Photochem. & Photobiol.11: 503–509.CrossRefGoogle Scholar
  131. Quail, P. H. 1975. Interaction of phytochrome with other cellular components. Photochem. & Photobiol.22: 299–301.CrossRefGoogle Scholar
  132. —. 1983. Rapid action of phytochrome in photomorphogenesis. Pages 178–212in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  133. —,E. Schäfer andD. Marmé. 1973a. De novo synthesis of phytochrome in pumpkin hooks. Pl. Physiol.52: 124–127.Google Scholar
  134. ———. 1973b. Turnover of phytochrome in pumpkin cotyledons. Pl. Physiol.52: 128–131.CrossRefGoogle Scholar
  135. Rabino, I. andA. L. Mancinelli. 1980. Phytochrome pelletability in vitro. Pl. Physiol.65: S5.Google Scholar
  136. —— andK. M. Kuzmanoff. 1977. Photocontrol of anthocyanin synthesis. VI. Spectral sensitivity, irradiance dependence, and reciprocity relationships. Pl. Physiol.59: 569–573.Google Scholar
  137. Rau, W. andE. L. Schrott. 1979. Light mediated biosynthesis in plants. Photochem. & Photobiol.30: 755–765.CrossRefGoogle Scholar
  138. Rollin, P. 1972. Phytochrome control of seed germination. Pages 229–254in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  139. Roux, S. J. 1984. Ca2+ and phytochrome action in plants. Bioscience34: 25–29.PubMedCrossRefGoogle Scholar
  140. Sarkar, H. K. andP. S. Song. 1982. Blue light induced phototransformation of phytochrome in the presence of flavin. Photochem. & Photobiol.35: 243–246.CrossRefGoogle Scholar
  141. Satter, R. L. andA. W. Galston. 1976. The physiological functions of phytochrome. Pages 680–735in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, New York.Google Scholar
  142. Schäfer, E. 1975. A new approach to explain the high irradiance responses of photomorphogenesis on the basis of phytochrome. J. Math. Biol.2: 41–56.CrossRefGoogle Scholar
  143. —. 1978. Variation in the rates of synthesis and degradation of phytochrome in cotyledons ofCucurbita pepo L. during seedling development. Photochem. & Photobiol.27: 775–780.CrossRefGoogle Scholar
  144. —. 1981. Phytochrome and daylight. Pages 461–480in H. Smith (ed.), Plants and the daylight spectrum. Academic Press, London.Google Scholar
  145. —. 1982. Advances in photomorphogenesis. Photochem. & Photobiol.35: 905–910.CrossRefGoogle Scholar
  146. —,C. J. Beggs, L. Fukshanksy, M. G. Holmes andM. Jabben. 1981. A comparative study of the responsivity ofSinapis alba L. seedlings to pulsed and continuous irradiation. Planta153: 258–261.CrossRefGoogle Scholar
  147. —,L. Fukshansky andW. Shropshire, Jr. 1983. Action spectroscopy of photorev-ersible pigment systems. Pages 39–68in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  148. — andW. Haupt. 1983. Blue light effects in phytochrome mediated responses. Pages 723–744in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  149. —,T. U. Lassig andP. Schopfer. 1975. Photocontrol of phytochrome destruction in grass seedlings: The influence of wavelength and irradiance. Photochem. & Photobiol.22: 193–202.CrossRefGoogle Scholar
  150. ———. 1976. Photocontrol of phytochrome destruction and binding in dicotyledonous vs monocotyledonous seedlings: The influence of wavelength and irradiance. Photochem. & Photobiol.24: 567–572.CrossRefGoogle Scholar
  151. —,B. Marchal andD. Mariné. 1972. In vivo measurements of the phytochrome photostationary state in far red light. Photochem. & Photobiol.15: 457–464.CrossRefGoogle Scholar
  152. — andH. Mohr. 1980. Changes in the rates of photoconversion of phytochrome during etiolation in mustard seedlings. Photochem. & Photobiol.31: 495–500.CrossRefGoogle Scholar
  153. Schmidt, R. andH. Mohr. 1981a. Lag phase and rate of synthesis in light mediated anthocyanin synthesis. Planta151: 541–543.CrossRefGoogle Scholar
  154. ——. 1981b. Time dependent changes in the responsiveness to light of phytochrome mediated anthocyanin synthesis. Pl. Cell Environ.4: 433–437.Google Scholar
  155. ——. 1982. Evidence that a mustard seedling responds to the amount of Pfr and not to the Pfr/Ptot ratio. Pl. Cell Environ.5: 495–499.Google Scholar
  156. Schmidt, W. 1980. Physiological blue light reception. Struct. Bonding41: 1–44.Google Scholar
  157. Schneider, M. andW. Stimson. 1972. Phytochrome and photosystem I interaction in a high energy photoresponse. Proc. Natl. Acad. U.S.A.69: 2150–2154.CrossRefGoogle Scholar
  158. Schopfer, P. 1977. Phytochrome control of enzymes. Annual Rev. Pl. Physiol.28: 223–252.CrossRefGoogle Scholar
  159. — andK. Apel. 1983. Intracellular photomorphogenesis. Pages 258–288in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  160. Senger, H. (ed.). 1980. The blue light syndrome. Springer-Verlag, Berlin.Google Scholar
  161. —. 1982. The effect of blue light on plants and microorganisms. Photochem. & Photobiol.35: 911–920.CrossRefGoogle Scholar
  162. Shimazaki, Y., M. M. Cordonnier andL. H. Pratt. 1983. Phytochrome quantitation in crude extracts ofAvena by enzyme-linked immunosorbent assay with monoclonal antibodies. Planta159: 534–544.CrossRefGoogle Scholar
  163. —,Y. Moriyasu, L. H. Pratt andM. Furuya. 1981. Isolation of the red light absorbing form of phytochrome from light grown pea shoots. Pl. Cell Physiol.22: 1165–1173.Google Scholar
  164. Shropshire, W., Jr. 1972a. Phytochrome, a photochromic sensor. Pages 33–72in A. A. Giese (ed.), Photophysiology. Vol. 7. Academic Press, London.Google Scholar
  165. —. 1972b. Action spectroscopy. Pages 161–181in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  166. — andH. Mohr (eds.). 1983. Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  167. Siegelman, H. W. andS. B. Hendricks. 1957. Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Pl. Physiol.32: 393–398.Google Scholar
  168. ——. 1958. Photocontrol of anthocyanin synthesis in apple skin. Pl. Physiol.33: 185–190.CrossRefGoogle Scholar
  169. Slabecka-Szweykowska, A. 1955. On the influence of the wavelength of light on the biogenesis of anthocyanin pigment in theVitis vinifera tissue in vitro. Acad. Soc. Bot. Polon.24: 3–11.Google Scholar
  170. Smith, H. 1972. The photocontrol of flavonoid biosynthesis. Pages 433–481in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.Google Scholar
  171. —. 1975. Phytochrome and photomorphogenesis. McGraw-Hill, London.Google Scholar
  172. — (ed.). 1981. Plants and the daylight spectrum. Academic Press, London.Google Scholar
  173. — andR. E. Kendrick. 1976. The structure and properties of phytochrome. Pages 377–424in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, London.Google Scholar
  174. Smith, W. O. 1983. Phytochrome as a molecule. Pages 96–118in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  175. Spruit, C. J. P. andA. L. Mancinelli. 1969. Phytochrome in cucumber seeds. Planta88: 303–310.CrossRefGoogle Scholar
  176. Steinitz, B., H. Drumm andH. Mohr. 1976. The appearance of competence for phytochrome mediated anthocyanin synthesis in the cotyledons ofSinapis alba L. Planta130:23–31.CrossRefGoogle Scholar
  177. —,E. Schäfer andH. Mohr. 1979. Correlation between far red absorbing phytochrome and response in phytochrome mediated anthocyanin synthesis. Pl. Cell Environ.2: 159–163.CrossRefGoogle Scholar
  178. Stone, H. J. andL. H. Pratt. 1978. Phytochrome destruction: Apparent inhibition by ethylene. Pl. Physiol.62: 922–923.Google Scholar
  179. ——. 1979. Characterization of the destruction of phytochrome in the red absorbing form. Pl. Physiol.63: 680–682.Google Scholar
  180. Swain, T. 1976. Nature properties of flavonoids. Pages 425–463in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, New York.Google Scholar
  181. Thimann, K. V., Y. H. Edmondson andB. S. Radner. 1951. The biogenesis of anthocyanins. III. The role of sugars in anthocyanin formation. Arch. Biochem. Biophys.34: 305–323.CrossRefGoogle Scholar
  182. — andB. S. Radner. 1958. The biogenesis of anthocyanin. VI. The role of riboflavin. Arch. Biochem. Biophys.74: 209–223.PubMedCrossRefGoogle Scholar
  183. Thomas, B., S. E. Penn, G. W. Butcher andG. Galfre. 1984. Discrimination between the red and far red absorbing forms of phytochrome fromAvena sativa L. by monoclonal antibodies. Planta160: 382–384.CrossRefGoogle Scholar
  184. Tokhever, A. K. andN. P. Voskresenskaya. 1971. Light curves for anthocyanin accumulation in buckwheat seedlings under light of différent quality. Fiziol. Rast.18: 904–910.Google Scholar
  185. Tokuhisa, J. G. and P. H. Quail. 1983. Spectral and immunochemical characterization of phytochrome isolated from light grownAvena sativa. Pl. Physiol.72: Suppl. 85.Google Scholar
  186. Vince, D. andR. Grill. 1966. The photoreceptors involved in anthocyanin synthesis. Photochem. & Photobiol.5: 407–411.CrossRefGoogle Scholar
  187. Wagner, E., I. Bienger andH. Mohr. 1967. The increase of phytochrome mediated anthocyanin synthesis in the mustard seedling by chloramphenicol. Planta75: 1–9.CrossRefGoogle Scholar
  188. — andH. Mohr. 1966. Kinetic studies to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. & Photobiol.5: 397–406.CrossRefGoogle Scholar
  189. Wall, J. K. andC. B. Johnson. 1983. An analysis of phytochrome action in the high irradiance response. Planta159: 387–397.CrossRefGoogle Scholar
  190. Wellmann, E. 1983. UV radiation in photomorphogenesis. Pages 745–756in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.Google Scholar
  191. —,G. Hrazdina andH. Grisebach. 1976. Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures ofHaplopappus gracilis. Phytochemistry15: 913–915.CrossRefGoogle Scholar
  192. Widell, K. O. 1983. Effect of SAN 9789 and light on the germination of seeds fromTaraxacum vulgare. Physiol. Pl.59: 223–227.CrossRefGoogle Scholar
  193. —,C. Sundquist andH. I. Virgin. 1981. Effect of SAN 9789 and light on phytochrome and the germination of lettuce seeds. Physiol. Pl.52: 325–329.CrossRefGoogle Scholar
  194. Wildermann, A., H. Drumm, E. Schäfer andH. Mohr. 1978. Control by light of hypocotyl growth in de-etiolated mustard seedlings. II. Sensitivity for newly formed phytochrome after a light to dark transition. Planta141: 217–223.CrossRefGoogle Scholar
  195. Wong, E. 1976. Biosynthesis of flavonoids. Pages 464–526in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, New York.Google Scholar

Copyright information

© The New York Botanical Garden 1985

Authors and Affiliations

  • Alberto L. Mancinelli
    • 1
  1. 1.Department of Biological SciencesColumbia University in the City of New YorkNew York

Personalised recommendations