The Botanical Review

, Volume 46, Issue 1, pp 75–99 | Cite as

Ion exchange properties of roots and ionic interactions within the root apoplasm: Their role in ion accumulation by plants

  • R. J. Haynes
Interpreting Botanical Progress


Free Space Cation Exchange Capacity Botanical Review Plant Soil Monovalent Cation 


Lors de leur passage d’éléments nutritifs, en solution dans le sol, vers le mécanisme actif d’absorption, localisé a la surface symplasmique, les ions, absorbés au plasmalemma des cellules de racine, doivent en premier lieu passer à travers les espaces libres de la membrane cellulaire. Cet article discute les propriétés des racines au point de vue de l’échange de cations en termes d’intéractions ioniques à l’interieur de l’apoplasme racinaire et les conséquences de telles intéractions sur l’accumulation d’ions par la plante.

Les espaces libres dans la membrane cellulaire des racines sont considérés comme un libre continuum diffusible de la solution ionique externe, mais ses propriétés sont modifiées par les charges ioniques des substances localisées à l’intérieur de la matrice de la membrane cellulaire. Le rôle de ces espaces libres dans le transport radial des ions est examiné et les intéractions ioniques complexes qui se jouent a l’intérieur des espaces libres est discuté. Il est conclu que plus de recherche est nécéssaire pour élucider clairement le rôle des espaces libres dans l’accumulation des ions par les plantes. Cependant, les resultats indiquent que, sous certaines conditions expérimentales, les intéractions ioniques à l’intérieur des espaces libres des racines influencent qualitativement la composition ionique des plantes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, W. P. 1976. Transport through roots. Pages 129–156in U. Luttge and M. G. Pitman (ed.). Encyclopedia of plant physiology, transport in plants. II. Part B. Tissues and organs. Springer-Verlag, Berlin.Google Scholar
  2. Andrew, C. S. andP. J. Van den Berg. 1973. The influence of aluminum on phosphate sorption by whole plants and excised roots of some pasture legumes. Aust. J. Agric. Res.24: 341–351.CrossRefGoogle Scholar
  3. Arvik, J. H. andR. L. Zimdahl. 1974. The influence of temperature, pH, and metabolic inhibitors on uptake of lead by plant roots. J. Environ. Qual.3: 374–376.CrossRefGoogle Scholar
  4. Asher, C. J. andP. G. Ozanne. 1961. The cation exchange capacity of plant roots, and its relationship to the uptake of insoluble nutrients. Aust. J. Agric. Res.12: 755–766.CrossRefGoogle Scholar
  5. Baker, P. A. andJ. L. Hall. 1975. Ion transport—Introduction and general principles. Pages 1–37in D. A. Baker and J. R. Hall (eds.). Ion transport in plant cells and tissues. North-Holland Publ. Co., Amsterdam.Google Scholar
  6. Bange, G. G. J. 1973. Diffusion and absorption of ions in plant tissue. III. The role of the root cortex cells in ion absorption. Acta Bot. Neerl.22: 529–542.Google Scholar
  7. Barber, D. A. andH. V. Koontz. 1963. Uptake of dinitrophenol and its effect on transpiration and calcium accumulation in barley seedlings. Plant Physiol.38: 60–65.PubMedGoogle Scholar
  8. — andR. S. Russell. 1961. The relationship between metabolism and exchangeability of ions in plant tissues. J. Exp. Bot.12: 252–260.CrossRefGoogle Scholar
  9. — andM. G. T. Shone. 1967. The initial uptake of ions by barley roots. III. The uptake of cations. J. Exp. Bot.18: 631–643.CrossRefGoogle Scholar
  10. Beauford, W., J. Barber, andA. R. Barringer. 1977. Uptake and distribution of mercury within higher plants. Physiol. Plant.39: 261–265.CrossRefGoogle Scholar
  11. Bowling, D. J. F. 1976. Uptake of ions by plant roots. Chapman & Hall, London.Google Scholar
  12. Branton, D. andL. Jacobson. 1962. Iron localization in pea plants. Plant Physiol.37: 546–561.PubMedGoogle Scholar
  13. Briggs, G. E. 1957. Some aspects of free space in plant tissues. New Phytol.56: 305–324.CrossRefGoogle Scholar
  14. Brouwer, R. 1959. Diffusion and exchangeable rubidium ions in pea roots. Acta Bot. Neerl.8: 68–76.Google Scholar
  15. Broyer, T. C., C. M. Johnson, andR. E. Paull. 1972. Some aspects of lead in plant nutrition. Plant Soil36: 301–313.CrossRefGoogle Scholar
  16. Butler, G. W. 1959. Uptake of phosphate and sulphate by wheat roots at low temperature. Physiol. Plant.12: 917–925.CrossRefGoogle Scholar
  17. Campbell, R. andA. D. Rovira. 1974. The study of the rhizosphere by scanning electron microscopy. Soil Biol. Biochem.5: 747–752.CrossRefGoogle Scholar
  18. Clarkson, D. T. 1966. The effect of aluminum on uptake and metabolism of phosphorus by barley seedlings. Plant Physiol.41: 165–172.PubMedGoogle Scholar
  19. —. 1967. Interactions between aluminum and phosphorus on root surfaces and cell wall material. Plant Soil27: 347–356.CrossRefGoogle Scholar
  20. -,E. R. Mercer, M. G. Johnson, and D. Mattam. 1975. The uptake of nitrogen (ammonium and nitrate) by different segments of roots of intact barley plants. Agricultural Research Council, Letcombe Laboratory Annual Report 1974, pp. 10–13.Google Scholar
  21. — andA. W. Robards. 1975. The endodermis, its structural development and physiological role. Pages 415–436in J. G. Torrey and D. T. Clarkson (eds.). The development and function of roots. Academic Press, London.Google Scholar
  22. — andJ. Sanderson. 1971. Inhibition of the uptake and long-distance transport of calcium by aluminum and other polyvalent cations. J. Exp. Bot.22: 837–851.CrossRefGoogle Scholar
  23. —— 1974. The endodermis and its development in barley roots as related to radial migration of ions and water. Pages 87–100in J. Kolek (ed.). Structure and function of primary root tissue. Slovak Academy of Sciences, Bratislava.Google Scholar
  24. —— 1978. Sites of absorption and translocation of iron in barley roots. Tracer and microautoradiographic studies. Plant Physiol.61: 731–736.Google Scholar
  25. —— andR. S. Russell. 1968. Ion uptake and root age. Nature220: 805–806.CrossRefGoogle Scholar
  26. Collins, J. C. andP. J. Linstead. 1969. Effect of calcium on the potassium flux into the exudate of excised maize roots. Planta84: 353–357.CrossRefGoogle Scholar
  27. Colvin, J. R. andG. G. Leppard. 1973. Fibrillar, modified polygalacturonic acid in, on, and between plant cell walls. Pages 315–331in F. Loewus (ed.). Biogenesis of plant cell wall polysaccharides. Academic Press, New York.Google Scholar
  28. Crooke, W. M. 1964. The measurement of the cation-exchange capacity of plant roots. Plant Soil21: 43–49.CrossRefGoogle Scholar
  29. — andA. H. Knight. 1962. An evaluation of published data on the mineral composition of plants in the light of cation-exchange capacities of their roots. Soil Sci.93: 365–373.CrossRefGoogle Scholar
  30. —— 1971. Root cation exchange capacity and organic acid content of tops as indices of varietal yield. J. Sci. Food Agric.22: 389–392.CrossRefGoogle Scholar
  31. —— andI. R. MacDonald. 1960. Cation-exchange capacity and pectin gradients in leek root segments. Plant Soil13: 123–127.CrossRefGoogle Scholar
  32. Daftardar, S. Y. andN. K. Savant. 1971. Influence of competition between root colloids for cations on K/Ca ratio in plant tops. Plant Soil34: 201–202.CrossRefGoogle Scholar
  33. Dainty, J. andA. B. Hope. 1961. The electrical double layer and Donnan equilibrium in relation to plant cell walls. Aust. J. Biol. Sci.14: 541–551.Google Scholar
  34. Davis, R. F. andN. Higinbotham. 1976. Electrochemical gradients and K+ and Cl fluxes in excised corn roots. Plant Physiol.44: 1383–1392.Google Scholar
  35. Dayan, E., A. Banin, andY. Henis. 1977. Studies on the mucilaginous layer of barley (Hordeum vulgare) roots. Plant Soil47: 171–191.CrossRefGoogle Scholar
  36. Devaux, H. 1916. Action rapide des solutions salines sur les plantes vivantes: Deplacement reversible d’une partie des substances basiques contenues dans la plante. C. R. Acad. Sci. Paris162: 561–563.Google Scholar
  37. Drake, M. andJ. E. Steckel. 1955. Solubilization of soil and rock phosphate as related to root cation exchange capacity. Soil Sci. Soc. Am. Proc.19: 449–450.CrossRefGoogle Scholar
  38. —,J. Vengris, andW. G. Colby. 1951. Cation exchange capacity of plant roots. Soil Sci.72: 139–147.CrossRefGoogle Scholar
  39. Drew, M. C. andO. Biddulph. 1971. Effect of metabolic inhibitors and temperature on uptake and translocation of45Ca and42K by intact bean plants. Plant Physiol.48: 426–432.PubMedGoogle Scholar
  40. Drover, D. P. 1972a. The effect of several enzymes on cation exchange in roots. Commun. Soil Sci. Plant Anal.3: 393–397.Google Scholar
  41. —. 1972b. Cation exchange in plant roots. Commun. Soil Sci. Plant Anal.3: 207–209.Google Scholar
  42. Dunham, C. W., C. L. Hamner, andS. Asen. 1956. Cation exchange properties of the roots of some ornamental plant species. Proc. Am. Soc. Hortic. Sci.68: 556–563.Google Scholar
  43. Edwards, D. G. 1968. The mechanism of phosphate absorption by plant roots. Proc. 9th Int. Congr. Soil Sci. Adelaide 1968, pp. 183–190.Google Scholar
  44. Elgabaly, M. M. andL. Wiklander. 1949. Effect of exchange capacity of clay mineral and acidoid content of plant on uptake of sodium and calcium by excised barley and pea roots. Soil Sci.67: 419–424.CrossRefGoogle Scholar
  45. Epstein, E. 1972. Mineral nutrition of plants; Principles and perspectives. John Wiley & Sons Inc., New York.Google Scholar
  46. Ferguson, I. B. andD. T. Clarkson. 1975. Ion transport and endodermal suberization in the roots ofZea mays. New Phytol.75: 69–79.CrossRefGoogle Scholar
  47. —— 1976. Ion uptake in relation to development of a root hypodermis. New Phytol.77: 11–14.CrossRefGoogle Scholar
  48. Franklin, R. E. 1969. Effect of adsorbed cations on phosphorus uptake by excised roots. Plant Physiol.44: 697–700.PubMedCrossRefGoogle Scholar
  49. — 1970. Effect of adsorbed cations on phosphorus absorption by various plant species. Agron. J.62: 214–216.CrossRefGoogle Scholar
  50. —. 1971. Cation effects on chloride, sulphate, and phosphate uptake by excised roots. Soil Sci.112: 343–347.Google Scholar
  51. Frejat, A., A. Anstett, andF. Lemaire. 1967. Capacité d’échange de cations des systèmes radiculaires et des sols et leurs relations avec l’alimentation minérale. Ann. Agron.18: 31–64.Google Scholar
  52. Ganev, S. 1976. De la manière de fonctionnement de l’adsorbant radiculaire des plantes. Agrochimica20: 183–190.Google Scholar
  53. Gauch, H. G. 1973. Inorganic plant nutrition. Dowden, Huchinson, & Ross, Stroudsburg.Google Scholar
  54. Goren, A. andH. Wanner. 1971. The absorption of lead and copper by roots ofHordeum vulgare. Ber. Schweiz. Bot. Ges.80: 334–340.Google Scholar
  55. Gray, B., M. Drake, andW. G. Colby. 1953. Potassium competition in grass-legume associations as a function of root cation exchange capacity. Soil Sci. Soc. Am. Proc.17: 235–239.CrossRefGoogle Scholar
  56. Harrison-Murray, R. S. andD. T. Clarkson. 1973. Relationships between structural development and the absorption of ions by the root system ofCucurbita pepo. Planta114: 1–16.CrossRefGoogle Scholar
  57. Haynes, R. J. andK. M. Goh. 1978. Ammonium and nitrate nutrition of plants. Biol. Rev.53: 465–510.CrossRefGoogle Scholar
  58. Heintz, S. G. 1961. Studies on cation-exchange capacities of roots. Plant Soil13: 365–383.CrossRefGoogle Scholar
  59. Higinbotham, N., B. Etherington, andJ. Foster. 1967. Mineral ion content and cell electropotentials of pea and oat seedling tissue. Plant Physiol.42: 37–46.PubMedGoogle Scholar
  60. Hooymans, J. J. M. 1964. The role of calcium in the absorption of anions and cations by excised barley roots. Acta Bot. Neerl.13: 507–540.Google Scholar
  61. Huffaker, R. C. andA. Wallace. 1958. Possible relationship of cation exchange capacity of plant roots to cation uptake. Soil Sci. Soc. Am. Proc.22: 392–394.CrossRefGoogle Scholar
  62. Hyde, A. H. 1966. Nature of the calcium effect in phosphate uptake by barley roots. Plant Soil24: 328–332.CrossRefGoogle Scholar
  63. Ighe, U. andS. Pettersson. 1974. Metabolism-linked binding of rubidium in the free space of wheat roots and its relation to active uptake. Physiol. Plant.30: 24–29.CrossRefGoogle Scholar
  64. Ingelsten, B. andB. Hymol. 1961. Apparent free space and surface film determined by a centrifugation method. Physiol. Plant.14: 157–170.CrossRefGoogle Scholar
  65. Jacobson, L., G. J. Hannapel andD. P. Moore. 1958. Non-metabolic uptake of ions by barley roots. Plant Physiol.33: 278–282.PubMedGoogle Scholar
  66. Jarvis, S. G. 1978. Copper uptake and accumulation by perennial ryegrass grown in soil and solution culture. J. Sci. Food Agric.29: 12–18.CrossRefGoogle Scholar
  67. —,L. H. P. Jones, andC. R. Clement. 1977. Uptake and transport of lead by perennial ryegrass from flowing solution culture with a controlled concentration of lead. Plant Soil46: 371–379.CrossRefGoogle Scholar
  68. ——, andM. J. Hopper. 1976. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil44: 179–191.CrossRefGoogle Scholar
  69. Jenny, H. 1961. Two-phase studies on availability of iron in calcareous soils. V. Kinetics of iron transfer as conditioned by ion exchange capacities and structure of roots. Agrochimica5: 281–289.Google Scholar
  70. —. 1966. Pathways of ions from soil into root according to diffusion models. Plant Soil25: 265–289.CrossRefGoogle Scholar
  71. — andK. Grossenbacher. 1963. Root-soil boundary zones as seen in the electron microscope. Soil Sci. Soc. Am. Proc.27: 273–277.CrossRefGoogle Scholar
  72. — andR. Overstreet. 1939. Cation interchange between plant roots and soil colloids. Soil Sci.47: 257–272.CrossRefGoogle Scholar
  73. Johnson, R. E. andW. A. Jackson. 1964. Calcium uptake and transport by wheat seedlings as affected by aluminum. Soil Sci. Soc. Am. Proc.28: 381–386.CrossRefGoogle Scholar
  74. Kansal, B. D., D. R. Bhambla andJ. S. Kanwar. 1974. Variations in fertilizer response of different varieties of wheat and rice. Indian J. Agric. Sci.44: 55–59.Google Scholar
  75. Keller, P. andH. Deuel. 1957. Kationenaustauschkapazitat und Pektingehalt von Pflanzenwurzeln. Z. Pflanzenernahr. Düng. Bodenk.79: 119–131.CrossRefGoogle Scholar
  76. Knight, A. H., W. M. Crooke, andR. H. E. Inkson. 1961. Cation-exchange capacities of tissues of higher and lower plants and their related uronic acid contents. Nature192: 142–143.PubMedCrossRefGoogle Scholar
  77. Kolosov, I. I. 1974. Absorptive activity of root systems of plants. Indian National Scientific Documentation Centre, New Delhi.Google Scholar
  78. Lagerwerff, J. V. 1960. The content exchange theory amended. Plant Soil13: 253–264.CrossRefGoogle Scholar
  79. Lauchli, A. 1976. Apoplasmic transport in tissues. Pages 3–34in U. Luttge and A. M. G. Pitman (eds.). Encyclopedia of plant physiology, transport in plants. II. Part B. Tissues and organs. Springer-Verlag, Berlin.Google Scholar
  80. Ledin, S. andL. Wiklander. 1974. Exchange acidity of wheat and pea roots in salt solutions. Plant Soil41: 403–413.CrossRefGoogle Scholar
  81. Legget, J. E., R. A. Galloway, andM. G. Gauch. 1965. Calcium activation of orthophosphate absorption by barley roots. Plant Physiol.40: 897–902.Google Scholar
  82. Leppard, G. G. 1974. Rhizoplane fibrils in wheat: demonstration and derivation. Science185: 1066–1067.PubMedCrossRefGoogle Scholar
  83. — andS. Ramamoorthy. 1975. The aggregation of wheat rhizoplane fibrils and the accumulation of soil-bound cations. Can. J. Bot.53: 1729–1735.Google Scholar
  84. Levitt, J. 1957. The significance of “Apparent Free Space” (A.F.S.) in ion absorption. Physiol. Plant.10: 882–888.CrossRefGoogle Scholar
  85. Macklon, A. E. S. 1975a. Cortical cell fluxes and transport to the stele in excised root segments ofAllium cepa L. I. Potassium, sodium and chloride. Planta122: 109–130.CrossRefGoogle Scholar
  86. —. 1975b. Cortical cell fluxes and transport to the stele in excised root segments ofAllium cepa L. II. Calcium. Planta122: 131–141.CrossRefGoogle Scholar
  87. — andA. Sim. 1976. Cortical cell fluxes and transport to the stele in excised root segments ofAllium cepa L. III. Magnesium. Planta128: 5–9.CrossRefGoogle Scholar
  88. Mattson, S. 1966. The ionic relationships of soil and plant. Acta Agric. Scand.16: 135–143.CrossRefGoogle Scholar
  89. Merkens, W. S., G. A. Dezoeten, andG. Gaard. 1972. Observations on ectodesmata and the virus infection process. J. Ultrastruct. Res.41: 397–405.PubMedCrossRefGoogle Scholar
  90. Mitsui, S., M. Nakagawa, A. Baba, K. Tensho, andK. Kumazawa. 1956. Dynamic studies on nutrient uptake by crop plants. X. Contact solutional uptake of fused magnesium phosphate (phosphorus 32) by acidoidal plant root and unsaturated soil colloid. J. Soil Sci.26: 497–501.Google Scholar
  91. Moore, D. P., L. Jacobson, andR. Overstreet. 1961. Uptake of calcium by excised barley roots. Plant Physiol.36: 53–57.PubMedGoogle Scholar
  92. Mouat, M. C. H. 1960. Interspecific differences in strontium uptake by pasture plants as a function of root cation-exchange capacity. Nature188: 513–514.CrossRefGoogle Scholar
  93. — andT. W. Walker. 1959. Competition for nutrients between grasses and white clover. II. Effect of root cation-exchange capacity and rate of emergence of associated species. Plant Soil11: 41–52.CrossRefGoogle Scholar
  94. Nagahashi, G., W. W. Thomson, andR. T. Leonard. 1974. The caparian strip as a barrier to the movement of Lanthanum on corn roots. Science183: 670–671.PubMedCrossRefGoogle Scholar
  95. Nissen, P. 1974. Uptake mechanisms: inorganic and organic. Annu. Rev. Plant Physiol.25: 53–79.CrossRefGoogle Scholar
  96. Nye, P. H. 1977. The relation between the radius of the root and its nutrient absorbing power (a). J. Exp. Bot.24: 783–786.CrossRefGoogle Scholar
  97. — andP. B. Tinker. 1977. Solute movement in the soil-root system. Blackwell Scientific Publications, Oxford.Google Scholar
  98. Oades, J. M. 1978. Mucilages at the root surface. J. Soil Sci.29: 1–16.CrossRefGoogle Scholar
  99. Persson, L. 1969. Labile-bound sulphate in wheat roots: Localization, nature and possible connection to active absorption mechanism. Physiol. Plant.22: 959–976.CrossRefGoogle Scholar
  100. Peterson, P. J. 1969. The distribution of zinc-65 inAgrostis tenuis Sibth. andA. stolonifera L. tissues. J. Exp. Bot.20: 863–875.CrossRefGoogle Scholar
  101. Pettersson, S. 1961. Ion absorption in young sunflower plants. II. The sulphate uptake in the apparent free space. Physiol. Plant.14: 123–132.CrossRefGoogle Scholar
  102. —. 1966. Active and passive components of sulphate uptake in sunflower plants. Physiol. Plant.19: 459–492.CrossRefGoogle Scholar
  103. —. 1971. A labile-bound component of phosphate in free space of sunflower plant roots. Physiol. Plant.24: 485–490.CrossRefGoogle Scholar
  104. —. 1975. Effects of ionic strength of nutrient solutions on phosphate uptake by sunflower. Physiol. Plant.33: 224–228.CrossRefGoogle Scholar
  105. Pitman, M. G. 1964. The effect of divalent cations on the uptake of salt by beetroot tissue. J. Exp. Bot.15: 444–456.CrossRefGoogle Scholar
  106. —. 1965a. The location of the Donnan free space in disks of beetroot tissue. Aust. J. Biol. Sci.18: 547–553.Google Scholar
  107. —. 1965b. Sodium and potassium uptake by seedlings ofHordeum vulgare. Aust. J. Biol. Sci.18: 10–24.Google Scholar
  108. Preston, R. D. 1974. The physical biology of plant cell walls. Chapman and Hall, London.Google Scholar
  109. Rao, L. C., T. N. Krishnmamurthy, andJ. T. Rao. 1967. Cation exchange capacity of roots and yield potential in sugar cane. Plant Soil27: 314–318.CrossRefGoogle Scholar
  110. Rathore, V. S., S. H. Wittwer, W. H. Jyung, Y. P. S. Bajaj, andM. W. Adams. 1970. Mechanisms of zinc in bean (Phaseolus vulgaris) tissues. Physiol. Plant.23: 908–919.CrossRefGoogle Scholar
  111. Raven, J. A. 1977. H+ and Ca2+ in phloem and symplast: relation of relative immobility of the ions to the cytoplasmic nature of the transport paths. New Phytol.79: 465–480.CrossRefGoogle Scholar
  112. Resnik, M. C., O. R. Lunt, andA. Wallace. 1969. Cs, K and Ca transport in two different species. Soil Sci.108: 64–73.Google Scholar
  113. Robson, A. D., D. G. Edwards, andJ. F. Loneragan. 1970. Calcium stimulation of phosphate absorption by annual legumes. Aust. J. Agric. Res.21: 601–612.CrossRefGoogle Scholar
  114. Robards, A. W., S. M. Jackson, D. T. Clarkson, andJ. Sanderson. 1973. The structure of barley roots in relation to the transport of ions into the stele. Protoplasma77: 291–312.CrossRefGoogle Scholar
  115. — andM. E. Robb. 1972. Uptake and binding of uranyl ions by barley roots. Science178: 980–982.PubMedCrossRefGoogle Scholar
  116. Russell, R. S. and D. T. Clarkson. 1973. The uptake and distribution of potassium by crop plants. Pages 79–92in Potassium in biochemistry and physiology. Proc. 8th Int. Colloquium IPI, Upsala, 1971. International Potash Institute.Google Scholar
  117. Shepherd, U. H. andD. J. F. Bowling. 1973. Active accumulation of sodium by roots of five aquatic species. New Phytol.72: 1075–1080.CrossRefGoogle Scholar
  118. Shone, M. G. T. andD. A. Barber. 1966. The initial uptake of ions by barley roots. I. Uptake of anions. J. Exp. Bot.17: 78–88.CrossRefGoogle Scholar
  119. Smith, F. A. andJ. A. Raven. 1976. H+ transport and regulation of cell pH. Pages 317–346in U. Luttge and M. G. Pitman (eds.). Encyclopedia of plant physiology, transport in plants. II. Part A. Cells. Springer-Verlag, Berlin.Google Scholar
  120. Smith, R. L. andA. Wallace. 1956a. Cation exchange capacity of roots and its relation to calcium and potassium content of plants. Soil Sci.81: 97–109.CrossRefGoogle Scholar
  121. —— 1956b. Influence of nitrogen fertilization, cation concentration and root cation exchange capacity on calcium and potassium uptake by plants. Soil Sci.82: 165–172.CrossRefGoogle Scholar
  122. van Steveninck, R. F. M. 1964. A comparison of chloride and potassium fluxes in red beet tissue. Physiol. Plant.17: 765–770.CrossRefGoogle Scholar
  123. Tanton, T. W. andS. H. Crowdy. 1972. Water pathways in higher plants. II. Water pathways in roots. J. Exp. Bot.23: 600–618.CrossRefGoogle Scholar
  124. Turner, R. G. 1970. The subcellular distribution of zinc and copper within the roots of metal tolerant clones ofAgrostis tenuis Sibth. New Phytol.69: 725–731.CrossRefGoogle Scholar
  125. — andC. Marshall. 1971. The accumulation of65Zn by root homogenates of zinctolerant clones ofAgrostis tenuis Sibth. New Phytol.70: 539–545.CrossRefGoogle Scholar
  126. Tyree, M. T. 1970. The symplast concept. A general theory of symplastic transport according to the thermodynamics of irreversible processes. J. Theoret. Biol.26: 181–214.CrossRefGoogle Scholar
  127. Vakhmistrov, D. B. 1967. On the function of apparent free space in plant roots. A study of the absorbing power of epidermal and cortical cells in barley roots. Soviet Plant Physiol.14: 103–107.Google Scholar
  128. Viets, F. 1944. Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol.19: 466–480.PubMedGoogle Scholar
  129. Volz, M. G. andL. Jacobson. 1974. A specific Ca requirement for potassium uptake by excised vetch roots. Plant Soil41: 647–659.CrossRefGoogle Scholar
  130. — andL. Jacobson. 1977. Nature and magnitude of calcium uptake by excised roots of vetch and barley. Plant Soil46: 79–91.CrossRefGoogle Scholar
  131. Wacquant, J. -P. 1971. Sur les relations entre l’adsorption radicellaire préférentielle et l’absorption sélective de Ca, Mg, K et Na, chez diverses populationsd’Anagallis arvensis L. et d’autres espèces. C. R. Acad. Sci.272: 711–714.Google Scholar
  132. —. 1977. Physico-chemical selectivity for cations and CEC of grass roots. Plant Soil47: 257–261.CrossRefGoogle Scholar
  133. Wahid, P. A., C. B. Kamala Devi, andN. G. Pillai. 1974. Interrelationships among root CEC, yield and monoand divalent cations in coconut (Cocus nucifera L.). Plant Soil40: 607–617.CrossRefGoogle Scholar
  134. Walker, T. W. 1960. Uptake of ions by plants growing in soil. Soil Sci.89: 328–332.CrossRefGoogle Scholar
  135. Weigl, J. 1970. Die Permeation von Ionen als Bewegung durch eine electrostatishe Barriere. Z. Naturforsch.256: 1149–1154.Google Scholar
  136. — andU. Luttge. 1962. Mikroautoradiographische Untersuchungen über die Aufnahme von35SO4 2− durch Wurzeln vonZea mays L. Die Funktion der primaren Endodermis. Planta59: 15–19.CrossRefGoogle Scholar
  137. Wheeler, H. andP. Hanchey. 1971. Pinocytosis and membrane dilation in uranyl-treated plant roots. Science171: 68–71.PubMedCrossRefGoogle Scholar
  138. Winter, H. 1961. The uptake of cations byVallisneria leaves. Acta Bot. Neerl.10: 341–392.Google Scholar

Copyright information

© The New York Botanical Garden 1980

Authors and Affiliations

  • R. J. Haynes
    • 1
  1. 1.Department of Soil ScienceLincoln CollegeCanterburyNew Zealand

Personalised recommendations